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Chapter 1

Introduction

Algebraic Topology is the art of turning existence questions in topology into existence
questions in algebra, and then showing that the algebraic object cannot exist: this then
implies that the original topological object cannot exist. This procedure usually has a
loss of information, and if the algebraic object does exist it does not typically allow us
to show that the original topological object does.

Many interesting topological problems can be expressed in the following form.

The extension problem. Let X be a topological space, A C X a subspace, and
f: A — Y a continuous function into a third space Y. Does there exist a continuous
function F': X — Y so that F|g = f?

The most basic instance of this problem arises when taking X = D™ to be the n-
dimensional disc, A =Y = S"! to be the (n — 1)-dimensional sphere, and f = Idgn-1 :
Sn=1 5 §7=1 o be the identity. The problem then asks whether there is a continuous
function from the disc to its boundary which fixes each point on the boundary. In the
course we shall prove the following theorem.

Theorem. There is no continuous function F : D™ — S™~! such that the composition
Snfl incl. Dn F Snfl

is the identity.

You may find it intuitively quite clear that there is no such F', but the difficulty in
proving this is apparent: while it is obvious that various naive choices of F' : D" —
S™~1 do not work, we must show that no choice can work, and in principle there are a
great many potential choices with very little mathematical structure to work with. The
machinery of Algebraic Topology translates proving the theorem above to proving:

Theorem. There is no group homomorphism F': {0} — Z such that the composition
Y/ )| S/

is the identity.

[ hope you will agree that this algebraic theorem is considerably easier to prove. There
are several other classical results in mathematics which we shall be able to rephrase as
an extension problem—or something like it—and hence solve using the machinery of
Algebraic Topology. One is that the notion of dimension is well-defined:

Theorem. If there is a homeomorphism R™ = R™, then n = m.

Another is the fundamental theorem of algebra:
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Theorem. Any non-constant polynomial with coefficients in C has a root in C.

This introduction has already mentioned several times the machinery of Algebraic
Topology. It is a characteristic of this subject that much foundational work must be put
in before any profit can be taken, but the foundational work then renders interesting and
apparently difficult problems almost trivial. Take this as consolation during the drier
parts of the course.

1.1 Some recollections and conventions
In order to write fewer words, we make the following convention.
Definition 1.1.1. A continuous function will be called a map.

We will need to repeatedly justify why various formulas that we write down do indeed
defione maps, i.e. are continuous. Almost all of these situations will be dealt with using
the following convenient lemma.

Lemma 1.1.2 (Gluing lemma). Let f: X — Y be a function between topological spaces,
and C, K C X be closed subsets such that C UK = X. Then f is continuous if and only
if fle:C =Y and flg : K =Y are continuous.

Proof. As a restriction of a continuous map is continuous, the condition is clearly neces-
sary. To show it is sufficient, we use the characterisation of continuity in terms of closed
sets: f is continuous if and only if for each closed subset D C Y, f~1(D) is closed.

In the situation of the lemma we have f~1(D)NC = (f|c)~ (D), which is closed in C
as f|c is continuous, and so is closed in X because C is closed in X . Similarly f~1(D)NK
is closed in X. But then f~}(D) = f~YD)N(CUK) = (f~YD)NnC)U (f1(D)NK)
is a finite union of closed sets, and so closed. O

Later in the course we will need the following standard lemma.

Lemma 1.1.3 (Lesbegue number lemma). Let (X, d) be a metric space which is compact.
For any open cover U = {Uq }aer of X there exists a § > 0 such that each ball Bs(x) C X
is contained entirely in some U,,.

Proof. Suppose no such ¢ exists. Then for each n € N there exist an x,, € X such that
B n () is not contained entirely in some U,. As X is compact the set {zn}nen has a
limit point, y. This lies in some U, so there exists an r > 0 such that B,(y) also lies in
U,. But now let N > 0 be such that

(i) 4+ <5, and
(i) d(zn,y) < 5.

Then By /y(7n) is contained inside B, (y), and hence inside Uy, a contradiction. O
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1.2 Cell complexes

A convenient way to construct topological spaces, which we shall see interacts well with
the tools of Algebraic Topology, is the notion of attaching cells.

Definition 1.2.1. For a space X and a map f : S"~! — X, the space obtained by
attaching an n-cell to X along f is the quotient space

XUy D" :=(XUD")/ ~
where ~ is the equivalence relation generated by z ~ f(z) for x € S"~1 c D",
Definition 1.2.2. A (finite) cell complex is a space X obtained by
(i) starting with a finite set X° with the discrete topology, called the 0-skeleton,

(ii) having defined the (n — 1)-skeleton X"~ ! form the n-skeleton X" by attaching a
collection of n-cells along finitely many maps {f, : "1 — X" 11 o/ ie.

X" = (X”—l U DZ) Jre S D ~ fo(z) € XL
a€el

(iii) stop at some finite stage k, so X = XF; this k is the dimension of X.
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Homotopy and the fundamental group

2.1 Homotopy

As we shall use the unit interval [0, 1] C R repeatedly, we denote it by I.

Definition 2.1.1 (Homotopy). Let f,g: X — Y be maps'. A homotopy from f to
gisamap H: X x I — Y such that

H(z,0) = f(z) and H(z,1) = g(x).

If such an H exists, we say that f is homotopic to g, and write f ~ g. If we wish to
record which homotopy between these maps we have in mind, then we write f ~p g.
If A C X is a subset, then we say that the homotopy H is relative to A if in addition

H(a,t) = f(a) = g(a) for alla € A and all ¢t € I.
In this case we write f ~ g rel A.

Proposition 2.1.2. For spaces X and Y and a subspace A C X, the relation “homotopic
relative to A" on the set of maps from X to'Y is an equivalence relation.

Proof. We must verify three properties.

(i) For amap f: X — Y, define a homotopy H : X x I — Y by H(z,t) = f(z). We

may write this as the composition
H:xx12x Ly

of continuous functions, so it is continuous. It satisfies H(z,0) = f(z) = H(z,1) =
H(x,t) for all x and ¢, so is a homotopy from f to f relative to any subset A C X.
Thus f ~ f rel A.

(i) Let H : X x I — Y be a homotopy from f to g relative to A. Define H(x,t) =
H(x,1—t). This is continuous as the map ¢t — 1 —t: I — I is continuous (in fact,
a homeomorphism). This new homotopy satisfies

H(z,0) = H(z,1) = g(z) H(z,1) = H(z,0) = f(x)

H(a,t) = H(a,1—1t)= f(a) =g(a) forac A

and so is a homotopy from g to f relative to A.

1Recall that a map is a continuous function.
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(iii) Let H : X x I =Y be a homotopy from f to g relative to A, and H' : X x [ =Y
be a homotopy from g to h relative to A. then define a function H” : X x [ — Y
by the formula

H(z,2t) 0<t<1/2

H'(z,2t—1) 1/2<t<1.

H"(z,t) = {
This function is well defined, as when ¢ = 1/2 we have
H(z,2-1/2) = H(x,1) = g(z) = H'(z,0) = H'(z,(2-1/2) — 1).

Furthermore, by the Gluing Lemma it is continuous, as it restricts to the continuous
function (z,t) — H(x,2t) on X x [0,1/2] and to the continuous function (z,t) —
H'(z,2t — 1) on X x [1/2,1]. O

Definition 2.1.3 (Homotopy equivalence). A map f: X — Y is a homotopy equiv-
alence if there exists a map g : Y — X such that go f ~Idx and fog ~ Idy. We call
g a homotopy inverse to f.

We say X is homotopy equivalent to Y if a homotopy equivalence f exists, and
write X ~ Y.

Example 2.1.4. Let X = S1, Y = R2\ {0}, and i : S' — R?\ {0} be the standard
inclusion. Define a map

r:R*\ {0} — S?
T — L

\
STV

Figure 2.1 The retraction of R? \ {0} to S!.

Then r o¢ = Idg1, so we may take the constant homotopy. On the other hand the
composition i o r : R?\ {0} — R?\ {0} is z — % . Define a homotopy

||

H:(R*\ {0}) x I — R?\ {0}

(@,t) — Faam
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which is well-defined as if ¢+ (1—¢)-|z| = 0 then |z| = % < 0, which is impossible. This

I
is a homotopy from i or to Idg2\ (o}, and so i is a homotopy equivalence with homotopy
inverse r; S ~ R?\ {0}.

Example 2.1.5. Let Y = R", X = {0}, and ¢ : {0} — R"™ be the inclusion. Let
7 : R™ — {0} be the only map there is. Then r oi = Ids, and i o7 : R" — R" is the
constant map to 0. Define H : R" x I — R"™ by H(x,t) = t-x, which is a homotopy from
1 or to Idgn. Thus ¢ is a homotopy equivalence.

This property is central in the subject, and gets its own name.

Definition 2.1.6 (Contractible). A space X is contractible if it homotopy equivalent
to the 1-point space: X ~ {x}.

We wish to say that the relation of homotopy equivalence between spaces is an equiv-
alence relation, but first need a tool.

Lemma 2.1.7. Let fy, f1 : X — Y be homotopic maps, and go, g1 : Y — Z be homotopic
maps. Then the maps gg o fo,g1 0 f1 : X — Z are homotopic.

Proof. Let H be a homotopy from fy to f1, and G be a homotopy from gy to g;. We will
show that both gy o fy and g1 o fi are homotopic to gg o f1, and then use transitivity of
the homotopy relation.

(i) gopofo~goofy: Let H” : X x I — Z be the map go o H (a composition of
continuous functions, so continuous). This gives the desired homotopy.

(ii) gr1ofy ~ggofy: Let H” : X x I — Z be the map H' o (f1 x Id;) (a composition
of continuous functions, so continuous). This gives the desired homotopy. O

In particular, this lemma says that given maps

!
T'-Xx_ v-lsz
g

such that f ~ g, then ho f ~hog and foi ~ goi. This is the form in which we will
generally use this lemma.

Proposition 2.1.8. The relation of homotopy equivalence satisfies
(i) X ~ X for any space X,

(ii) if X ~Y then Y ~ X,

(iii) if X ~Y and Y ~ Z then X ~ Z.

Proof.

(i) Let f =g =Idx and all the homotopies be constant.
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(ii) If f: X — Y is a homotopy equivalence with homotopy inverse g, then g is clearly
also a homotopy equivalence (with homotopy inverse f).

(iii) Suppose that we have maps

f f!

such that
fog~Idy flog ~Idz gof~Idx ¢ of ~Idy.

Then applying Lemma 2.1.7 several times we obtain

(gogho(flof)y=go(gdof)of~goldyof=gof~Idx

and
(f’of)o(gog/):f/o(fog)og/:f’oldyog/:f'oglzldz.
O

Definition 2.1.9 (Deformation retraction). For a space X and a subspace A, a defor-
mation retraction of X to A is a map r : X — A so that 7|4 = Id4 and i or ~ Idx?2.

In particular, if there is a deformation retraction of X to A then the inclusion map
1: A — X is a homotopy equivalence with homotopy inverse r: the homotopy ior ~ Idx
is part of the definition of deformation retraction, and r o7 = Ids so we can take the
constant homotopy.

There is a related notion to that of a deformation retraction, which we introduce
Nnow.

Definition 2.1.10 (Retraction). For a space X and a subspace A, a retraction of X
to Aisamap r: X — A so that r|4 = Id4.

Warning 2.1.11. A retraction need not be a homotopy equivalence! For example, if X
is a non-empty space and xy € X a point, there is a retraction of X to the subspace {z¢}
given by sending every point of X to xg. This will only be a homotopy equivalence if X
is contractible.

2.2 Paths

Definition 2.2.1 (Paths and loops). For a space X and points zg, 21 € X, a path from
xo to x1 is a map v : I — X such that v(0) = ¢ and (1) = x1. We write v : zg ~~ 7.
If xg = x1 then we call 7 a loop based at xg.

2If we insist that i o r ~ Idx rel A then this is called a strong deformation retraction. Some
authors call this stronger notion “deformation retraction", so beware.
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If ~ is a path from z to 21 and ' is a path from z1 to zo, then we define a new path
~v-+": 1 — X, the concatenation of v and 7/, by the formula

v(2t) 0<t<1/2

(vt = {'y'(%— 1) 1/2<t<1.

(This is continuous by the Gluing Lemma.) This is a path from zy to x2. We also define
a path v~! : T — X, the inverse of v, by the formula

) = (1 - 1),

which gives a path from z; to zp. Finally, we define a path ¢, : I — X, the constant
path at the point xg, by ¢z, (t) = zo.

If we define a relation ~ on the space X by
x ~ 1y < there is a path in X from x to y

then the above three constructions (concatenation, inverse, constant paths) show that
this is an equivalence relation.

Definition 2.2.2 (Path components and mp). The equivalence classes of ~ are called
path components, and the set of equivalence classes is denoted mo(X). If there is a
single equivalence class then we say X is path connected.

Proposition 2.2.3. To a map f: X — Y there is a well-defined associated function
mo(f) : mo(X) — mo(Y)
given by mo(f)([x]) = [f(z)]. Furthermore,
(i) if [ = g then mo(f) = mo(g),
(ii) for maps A M B 5 C we have mo(k o h) = mo(k) o mo(h),
(i4) mo(Idx) = Idq(x)-

Proof. We must show that the proposed function is well-defined, so let [z] = [2/] € m(X):
this means that there is a path v : I — X from z to 2. Then fo~: I — Y is a path
from f(z) to f(2'), and so [f(x)] = [f(2')] € mo(Y), as required.

Properties (ii) and (iii) are clear from the definition. For (i), let H : X x I — Y be
a homotopy from f to ¢g. For x € X the map H(x,—) : I — Y is a path from f(z) to
g(x), and so [f(x)] = [g(x)] € mo(Y). Thus mo(f)([z]) = mo(g)(]z]), and this holds for
any x so mo(f) = mo(g) as required. O

Corollary 2.2.4. If f: X — Y is a homotopy equivalence then mo(f) : mo(X) — mo(Y)
s a bijection.
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Proof. If g : Y — X is a homotopy inverse to f then we have

mo(f) o mo(g) = mo(f © g) = mo(Idy) = Id(v)

and similarly
mo(g) o mo(f) = mo(g o f) = mo(ldx) = Idr,(x)

so mp(g) is inverse to mo(f). O

Example 2.2.5. The space {—1, 1} with the discrete topology is not contractible, i.e. is
not homotopy equivalent to the one-point space {}. This is because continuous paths in
{—1, 1} must be constant, so mo({—1,1}) = {—1, 1} has cardinality 2. But mo({*}) = {*}
has cardinality 1, so these are not in bijection.

Example 2.2.6. The space R? does not retract (cf. Definition 2.1.10) on to the subspace
{(—1,0),(1,0)}. If we write i : {(—1,0),(1,0)} — R2 for the inclusion, and suppose
r: R? = {(=1,0),(1,0)} is a retraction, so r o i = Idg_1,0)(1,0)}, then we obtain a
factorisation

70o({(=1,0), (1,0)}) ™Y 7o(®2) ™% 70({(~1,0), (1,0)})

of the identity map. By the previous example mo({(—1,0), (1,0)}) has cardinality 2, but
R? is path-connected so 7o (IR?) has cardinality 1. In particular, mo(7) cannot be injective,
so mo(r) o (i) cannot be the identity map.

Definition 2.2.7. Two paths 7,7 : I — X from zy to z; are homotopic as paths
if they are homotopic relative to {0,1} C I in the sense of Definition 2.1.1. We write
~v =~ ~" as paths from g to 7.

Lemma 2.2.8. If vy =~ v as paths from xq to x1, and ) =~ ~; as paths from z1 to x2,
then vo - vy =~ 71 -1 as paths from g to x2.

Proof. Let H be a relative homotopy from 7 to 71, and H' be a relative homotopy from

Y to . As H(1,t) =z = H'(0,¢) for all ¢, these homotopies fit together to a function
H" : I xI— X given by

H(2s,1) 0<s<1/2
H((2s—1,t) 1/2<s<1

H"(s,t) = {

which is continuous by the Gluing Lemma.

1

4l 7{

tT H(2s,t) | H'(2s—1,1)

Yo Yo
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This satisfies
H'(=,0)= (v -10)(=) H'(=1) = -n)(=) H'0,t) =2 H'(11)=
as required. ]

Proposition 2.2.9. Let vy : ©g ~> x1, 71 : 1 ~ Ta, and v : 2 ~> x3 be paths in X.
Then

(i) (v0-m) 2= (71-72) as paths from g to 3,

(1) Yo - €z, ™ Y0 X Cqo - Yo as paths from xq to w1,

1) Yo -y =z, as paths from xg to xg, and v, - Yo = ¢z, as paths from x1 to xq.
ol e th t dyt ) th t

Proof. First contemplate the following figures.

1 1 1
Yo M V2 7o Cao
-1
Yo 7 Y2 Yo Cy Yo ol
0 0 . 0 2
0 7 3 —Ss1 0 3 =21 0 3 =S 1

From these, we arrive at the following formulze.

(i) The homotopy

Y0(55) 0<s<td
H(s,t)=qmds—1—-1t) H<s<t2
4(1—

P-4 H2 <5<

goes from (Yo -71) - ¥2 to 70 - (71 - 72) as paths from xg to x3.

(ii) The homotopy

2s
0<
H(s,t) = {zO(tH) $ =
1 2 <

/\
I/\ 1\3+
—_

goes from g - ¢z, to 7y as paths from xg to x;.

(iii) The homotopy

~0(2s) ogsg%
H(s,t) = qo(l—t) F<s<it
(2 -2s) HE<s<1

goes from 7y - 70_1 to ¢z, as paths from zg to zo. O



2.3 The fundamental group 11

2.3 The fundamental group

Theorem 2.3.1. Let X be a space and xg € X be a point. Let m (X, xg) denote the set
of homotopy classes of loops in X based at xo. Then the rule [y] - [¥] := [y -+'] and the
element e := [cy,| define a group structure on w1 (X, o).

We call the resulting group the fundamental group of X based at xg.

Proof. Lemma 2.2.8 shows that the proposed composition law is well-defined, and Propo-
sition 2.2.9 shows that the group axioms are satisfied. O

Definition 2.3.2. A based space is a pair (X, zg) of a space X and a point xy € X,
called the basepoint. A map of based spaces f : (X,z9) — (Y,yo) is a continuous
map f: X — Y such that f(zg) = yo. A based homotopy is a homotopy relative to
{zo} C X in the sense of Definition 2.1.1.

Proposition 2.3.3. To a based map f : (X,z0) — (Y,yo) there is a well-defined associ-
ated function w1 (f) : m (X, z0) — m (Y, y0) given by m1(f)([7]) = [f o]. It satisfies

(i) m1(f) is a group homomorphism,
(i) if f is based homotopic to f' then m(f) = m1(f'),
(iii) for based maps (A, a) LN (B,b) LA (C,¢) we have m1(k o h) = m1(k) o w1 (h),

(i’U) 7T1(Idx) = Idm(X,a:o)'

Proof. The proposed function 7 (f) is well-defined, as if vy ~ 4/ as paths then foy ~ foy/
as paths.

(i) Note that focg, = ¢y, so m1(f) preserves the unit. Also fo(vy-y') = (fov)-(for'),
so m1(f) preserves the composition law.

(ii) if f ~ f" rel {xp} then fo~y~ f o~ rel {0,1}, as y({0,1}) = {zo}.
(i) m1(koh)(P]) = [kohon] = w1 (k) ([hon]) = (k) (m () (), for any 3] € 71 (4, a).
(iv) m1(1dx)(7]) = [ldx 0] = o] for any 3] € m1(X, z0). n

After having introduced the notation 71 (f) for the group homomorphism induced by
a based map f, will will now discard it in favour of the shorter notation f,.

Proposition 2.3.4 (Change of basepoint). Let u : xg ~> x1 be a path in X. It induces
a group isomorphism

U 7T1(X,.730) — 71’1(X,.731)
] [ty ]

satisfying

(i) if u =" as paths from xo to x1 then uy = ul,
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(ZZ) (CCUO)# = Idﬂ'l (X,x0)7
(1) if v : X1~ 22 s a path then (u-v)y = vy o uy,
(i) if f: X =Y sends xg to yo and x1 to y; then
(fou)yo fu= faouy : m(X,x0) — m(Y,y1),

or in other words the square

7['1(X, IL’O) i> 7['1(Y, yO)

i“# l(fOU)#

W1(X,$1)i>7r1(yay1)

commutes: going either way around it from the top left corner to the bottom right
corner yields the same homomorphism.

(v) if x1 = xo then uy is the automorphism of (X, xo) given by conjugation by
[u] € m1 (X, zo).

Proof. That u is a group homomorphism is a consequence of invoking Proposition 2.2.9
several times. Properties (i) — (iii) and (v) are by now standard arguments. For (iv) we
calculate

-1
(fouwgo f)(]) = (fowg(for]) =[fouw) ™ - (fory) (fou)
=[folw ™ v w)]=fillu™t -y -u)) = fulug(l])- O
Warning 2.3.5. By this proposition the fundamental groups based at different points
in a path connected space X are isomorphic, but they are not canonically isomorphic!
One has to choose a path between their basepoints to obtain an isomorphism.

Thus it makes sense to say “the fundamental group is trivial / abelian / has group-
theoretic property P" without referring to a basepoint. But it does not make sense
to have an element ag € m1(X,zp) and say “let a; € m(X,x1) be the corresponding
element".

If H: X xI — Y is a homotopy from f to g, and x¢p € X is a basepoint, then
u = H(zg,—) : I — Y is a path from f(zg) to g(zg) in Y. We can ask about the
relationship between the three homomorphisms

fe i m(X,m0) — (Y, f(20))
g« 1 m(X, 20) — m1(Y, g(0))
ug : m (Y, f(z0)) — m (Y, g9(20)),

which fit into the diagram

s %iu# (2.3.1)
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Lemma 2.3.6. uy o f. = g«, or in other words the triangle (2.3.1) commutes.

Proof. For a loop v: I — X based at zg consider the composition

F:IxI1P xwr ity

Consider the path ¢t : I — I x I from (0,1) to (1,1) given by s+ (s,1), and the path
¢~ : I —1x1Ifrom (0,1) to (1,1) given by concatenating the paths

s (0,1—3s) s+ (s,0) s~ (1,s).
These are paths between the same points, and we can define a homotopy
L(s,t)=t- L7 (s)+ (1 —t) - £7(s)

between them, using the vector space structure on R? O I x I and the fact that I x I is
convex. This shows that ¢t ~ ¢~ as paths from (0, 1) to (1,1).

Hence F o {t ~ F o (™ as paths from F(0,1) = H(zo,1) = g(zo) to F(1,1) =
H(wg,1) = g(xp). But [Folt] =[gov] and [Fol]=[u"!-(fox)-ul, as required. [J

Theorem 2.3.7. Let f: X — Y be a homotopy equivalence, and xo € X. Then
fo i m(X,m0) — m1(Y, f(w0))
s an isomorphism.

Proof. Let g : Y — X be a homotopy inverse to f, so fog >~y Idy and go f ~g Idx.
Let ' : I — X be the path u/(t) = H'(xo,1 — t), going from zy to g o f(z¢). Then
applying Lemma 2.3.6 gives

f* *
uly = (g0 f)e=guo fu:m(X,z0) =2 m(Y, f(w0)) 2> m(X, g0 f(x)),
which is an isomorphism: thus the map f, we are studying is injective, and the map

g« : (Y, f(xg)) — m (X, g0 f(xo)) (2.3.2)

is surjective. If can show that g, is also injective then we are done, as then it is an
isomorphism and so f, = (g.) "' o u%& is also an isomorphism.

To show that g, is injective we consider the path w : I — Y given by u(t) =
H(f(xp),1—1), going from f(zg) to fogo f(xzo). Applying Lemma 2.3.6 again gives

uy = (fog)e= froge:m(Y, f(z0)) 2> m(X, g0 f(xo)) — m(Y, fogo f(xo)),

which is an isomorphism. (Note the second map here is induced by f but is not the map
f« we are studying, as the basepoints involved are different.) Thus the map (2.3.2) is
also injective, as required. O

Definition 2.3.8. A space X is simply connected if it is path connected and its
fundamental group is trivial an some (and hence every) basepoint.
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Example 2.3.9. Any contractible space is simply connected.

Lemma 2.3.10. A space X is simply connected if and only if for each pair of points
xo,x1 € X there is a unique homotopy class of path between them.

Proof. Suppose X is simply connected, and let xg,z1 € X. As X is path connected
there exists a path from zg to z1. If v and 4/ are two such paths, then v~! -4/ is a loop
based at xg and so [y~!-4/] € m1 (X, 20) = {[cz,]}. Thus there is a homotopy of paths
v~ 4" =~ ¢z. Preconcatenating with v, there is a homotopy of paths from 7' to v, as
required.

Now suppose X has the property described in the statement of the lemma. In particu-
lar there exists a path between any pair of points, so X is path connected. Furthermore,
if v is a loop based at zg then so is ¢z, and so these are homotopic as paths. Thus

[v] = [ezo) € m1(X, o), and so 71 (X, ) is trivial. O



Chapter 3

Covering spaces

3.1 Covering spaces

Definition 3.1.1. A covering space of a space X is a pair ()~(,p) of a space X and a
map p : X — X such that for any x € X there is an open neighbourhood U of x such that
p~1(U) is a disjoint union of open sets of Y each of which is mapped homeomorphically
onto U. In this situation we call p a covering map.

For such an open neighbourhood U, we shall usually write p~1(U) =[] acr Va where
each ply, : Vo — U is a homeomorphism. We call these open sets U evenly covered.

¢ Ply-1w)

v >

Figure 3.1 The generic picture of an evenly covered set U.

Example 3.1.2. A homeomorphism is a covering map.

Example 3.1.3. If p : X — X and q: Y — Y are covering maps, so is the product
pxXqg: X XY —>XxY.

Example 3.1.4. Let S C C be the set of complex numbers of modulus 1, and consider
the map p : R — S! given by p(t) = e2™. For the set Uy~o := {z +iy € S|y > 0} we
have
P (Uy=0) = [[ G5+ 3);
JEZL
the disjoint union of Z-many open intervals. Furthermore
(. +3) — Uyso

p'(j,j+%)

is a continuous bijection, with inverse
.. 1
Uy>o — (4,5 + 3)

x + iy — j + arccos(z) /2.

15
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Similarly with Uy<o, Uz>o and Ug<p, and these four open sets cover St Thus p is a
covering map.

Example 3.1.5. Let S' € C, and p : S — S* be given by p(z) = 2™. Let 1 := e>™/™,
and for y € S' let £ be some nth root of y. Then

Py =6 n ot T
and p~1(S1\ {y}) is the complement of this set. Let
Vo :={z € S0 < arg(z/¢) < 2r/n}

and V; :=Vy-n' for i =0,1,2,...,n — 1,50 p~(s*\ {y}) = ]_[?:_011/;. Then ply, : V; —
ST\ {y} is a homeomorphism.

Vo

i%¢

i3¢

Figure 3.2 The set V| for n = 4.

Example 3.1.6. Let S? C R? be the unit sphere, and ~ be the equivalence relation on
S? generated by z ~ —x, with quotient space RP? := S2/ ~ (the real projective plane)
and quotient map p : S? — RP% Let V := {(x,9,2) € s?|z # 0}, an open set, and
U =p(V). Then p~1(U) =V, and so U C RP? is open.

Furthermore, V' = V<o [[ Vz>0, and we claim that p|y,., : Vzs0 — U is a homeo-
morphism (similarly for V., of course). To see this, we shall construct an inverse. By
the definition of the quotient topology, a continuous map U — Y for some space Y is
the same as a continuous map V' — Y which in constant on ~-equivalence classes. Thus
define the map

t:V—>Vz>0

(aj7y7z) — {

(z,y,2) if z >0,
(—x,—y,—2) if z<0.

This is clearly continuous and constant on ~-equivalence classes, and so defines a con-
tinuous function ¢ : U — V,~¢. It is inverse to ply,.,, and so p is a covering map.

Our interest in covering spaces comes from the following important property they
have with respect to paths and homotopies.
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Definition 3.1.7 (Lifting). Let p i)? — X _be a covering space, and f : Y — X be a
map. A lift of f along p is a map f:Y — X such that po f = f.

Lemma 3.1.8 (Ur}iqqeness of lifts lemma). Let p: X > Xbea covering space, f 1Y —
X be a map, and fo, f1 1Y — X be two lifts of f. Then the set

S:={yeY|fly) =Hl)}
1s both open and closed in'Y. Thus if Y is connected then either S =0 or S =Y.

Proof. Let us first show that S is open. Let y € S and U be an open neighbourhood
of f(s) € X which is evenly covered, so p~'(U) = [[,c; Va- Then fo(y) and fi(y) are
equal so lie in the same V. Thus, on N := fg ' (V3) N f; 1 (Vs) we have

plv, © foln = fIv =plv; 0 filn

but p|y, is a homeomorphism, so folv = filyv and y € N € S. Thus S is open.

Let us now show that S is closed. Let y € S and suppose fo(y) # fi(y). Let U be
an open neighbourhood of f(y) € X which is evenly covered; p~*(U) = [[,c; Va. Thus
foly) € V5 and fi(y) € V, for some 3,7 € I. As each V,, is mapped homeomorphically
to U, and fo(y) # fi(y), we must have 3 # ~. Now fgl(Vg) N ffl(VV) is an open
neighbourhood of y, so muct intersect S by the definition of closure. But then Vz and
V., must intersect, a contradiction. ]

Lemma 3.1.9 (Homotopy lifting lemma). Let p: X > X bea covering space, H :
Y x I — X be a homotopy from fo to f1, and fo be a lift of fo. Then there exists a
unique homotopy H : Y x I — X such that

(i) H(—,0) = fo(-), and
(ii) po H =H.

Proof. Let {U,}acr be an open cover of X by sets which are evenly covered, and write
p_l(Ua) = H,@EIa VB with p’vﬁ = U,.

Then {H 1 (U,)}aer is an open cover of Y x I. For each o € Y this restricts to an
open cover of the compact space {yp} x I, and by the Lesbegue number lemma there is
a N = N(yo) such that each path

H| oy xfi/mv,irny/n) < {wod x [, T — X

lies entirely inside some U,,. In fact, as {yo} x I is compact there is an open neighbourhood
Wy, of yo such that H(Wy, x [4, %1]) lies entirely inside some U, for each i. We are

now in the situation depicted in Figure 3.3.
We obtain a lift H ’Wyo «7 of H |Wy0 «1 as follows:

(i) We have H| : Wy, % [0, %] — U, and a lift f0|Wy0 Wy — X with image

Wy X [0, 7]
in some V3 which is mapped homeomorphically to Uy, via p|y,, so we can let

7 .i -1 . 1 v
H|Wy0><[0,%] = (p|Vg) OH‘WyOX[O,%] . Wyo X [O, N] — V/j c X.
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R R T }W

0 [0,1] 1

Figure 3.3

(ii) Proceed in the same way, lifting the (short) homotopy H| starting at

1 2
Wyo x5 W)

H

1 ., and so on.
Wyox{ﬁ}’

At the end of this process, we obtain a map ﬁ|Wy0xI lifting H|Wy0><] and extending

folw,, -

\;(?e may do this for every point yy € Y, so it is now enough to check that on (W, x
NN Wy, xI)= (W, NW,,) x I the two lifts we have constructed agree. The two
lifts do agree on (Wy, N Wy,) x {0}, as here they both restrict to folw,,nw,,, and so
by Lemma 3.1.8 they agree on an open and closed subset of (W,, N W,,) x I containing
(Wyo "Wy, ) x {0}. Restricting to each {y} x I we must obtain an open and closed subset
containing {y} x {0}, and so the whole of {y} x I (as I is connected): thus the two maps
agree on the whole of (W,, N W,,) x I. O

The following corollary is obtained by taking ¥ = {*} in the homotopy lifting lemma.

Corollary 3.1.10 (Path lifting). Let p : X > X bea covering space, v : I — X be a
path, and To € X be such that p(Zo) = v(0). Then there exists a unique path 5 : I — X
such that

(1) 7(0) = Zo, and
(i) poy =1.
Corollary 3.1.11. Let p: X > X bea covering space, v,y : I — X be paths from xg

to x1, and 7,7 : I — X be lifts starting at To € p~*(xq). If Y~ as paths, then 7 ~ 7'
as paths; in particular (1) = 7'(1).

Proof. Let H : I x I — X be a homotopy of paths from ~ to ~', and lift it starting at ¥
to obtain a homotopy H : I x I — X. Then

(i) H(—,1) is a lift of 4/ starting at Zo, so is equal to 7/,
(i) H(0,—) and H(1,—) are constant paths, so their lifts H (0, —) and H(1,0) are too,
and hence H is a homotopy of paths from ¥ to 7. O

Corollary 3.1.12. Let p: X X bea covering space, and X be path connected. Then
the sets p~Y(x) for x € X are all in bijection.
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Proof. Let v : I — X be a path from xg to z1, and for each yo € p~*(z¢) let 7y, be the
unique lift of v starting at yg. Define the function
Yo i p N (wo) — pH (1)
Yo — &yo(l)'
Similarly, the inverse path 4 =1 defines a function (1), : p~(z1) — p~!(x0). Now for
any 7o € p~ (o) we calculate
(714 0 74(y0) = endpoint of lift of v~ starting at 7, (1)

= endpoint of lift of y~! - ~ starting at yo

= endpoint of lift of ¢;, starting at yo
Yo,

so (y71)4 is a left inverse for 7. The analogous calculation with the other composition
shows it is also a right inverse. O

Definition 3.1.13. Say a covering map p : X — X is an n-sheeted cover (for n €
N U {oo}) if each p~!(z) has cardinality n.

We now come to the first connection between covering spaces and the fundamental
group.

Lemma 3.1.14. Let p: X > X bea covering map, xo € X, and To € p~*(x0). Then
the map p. : m1(X, Zo) — w1 (X, zo) is injective.

Proof. Let v : I — X be a loop based at &y such that p.([y]) = [cao], 50 po vy =~ ¢z as
paths. Let H be a homotopy of paths from p o~ to ¢z, and lift it starting at the lift
of po~. This gives a homotopy of paths H from v to a lift of ¢;,, which must be cz,,
and hence [y] = [cz,]. O

In the proof of Corollary 3.1.12 we constructed, for a covering map p : X — X and
path 7 : I — X from zg to x1, a function v, : p~!(x¢) — p~(x1). By Corollary 3.1.11
this function only depends on the homotopy class of «v as a path. In particular, this
construction defines a (right) action e of the group (X, ) on the set p~!(zo).

Lemma 3.1.15. Let p: X > Xbea covering map, and X be path connected.
(i) m(X,z0) acts transitively on p~*(x0) if and only if X is path connected.
(i) The stabiliser of yo € p~*(x0) is the subgroup

Im(py : 71'1(5(:,3/0) — m(X,z0)) < m1(X, 20).

(i) If X is path connected then there is a bijection

1 (X> ;UO)

—1
= —p~ (20)
P« (X, %0)

mnduced by acting on the point yg.



20 Chapter 3  Covering spaces

Proof. For (i), let us first show that if X is path connected then 71 (X, zo) acts transitively
on p~1(xg). Let yo,yh € p~(xo), and let vy : I — X be a path between them, which
exists by hypothesis. Then po~y is a loop in X based at xg, and + is the lift of it starting
at yo. Thus

Yo ® [por] =y,
as required.

Now let us show that if 7 (X, zo) acts transitively on p~!(zg) then X is path con-
nected. Suppose, for a contradiction, that yg, zg € X lie in different path components.
Using that X is path connected, choose paths 7,7, : I — X from p(yo) to xg and from
p(20) to o respectively, and lift them starting at yo and zg respectively. These paths
end at points y1,21 € p~'(xg) respectively, which must again be in different path com-
ponents. But as 71(X,x0) acts transitively on p~!(zg) there is a [y] € 71 (X, z¢) such
that 21 @ [y'] = y1, and so the lift of 4/ starting at z; ends at y1, which is a contradiction.

For (ii), suppose that yo ® [y] = yo, so the lift 4 of + starting at yo also ends at yp.
Thus 7 is a loop based at yg, and vy =po 7, so

7] = p<([3) € Tm(p. : 11(X, o) = m1 (X, 20)).

Conversely, if [y] € m (X, yo) then + is a (and so the) lift of po~/ starting at yo. It ends
at yo too, and so yp e [p o] = yo.

For (iii), we simply apply the Orbit-Stabiliser theorem from the theory of group
actions. O

Definition 3.1.16. We say that a covering map p : X — X is a universal cover if X
is simply connected.

The following connection between universal covers and the fundamental group is
immediate from this definition and Lemma 3.1.15.

Corollary 3.1.17. If a covering map p : X — X is a universal cover, then each %oy €
p~(zo) determines a bijection

C:m(X,x0) — p~ (o)

(Y] > Zo o [1].
We wish to use this bijection to understand the fundamental group, but it must be
used carefully, as m1(X,z0) is a group but p~!(zg) does not have a group structure.
Unravelling the definitions shows that the multiplication law on p~!(z) induced by this

bijection can be described as follows: for yo, 20 € p~*(z0), the product £(£~1(yo)-£71(20))
is obtained by

(i) choose a path 5 : I — X from o to 2o (this is unique up to homotopy, by Lemma
2.3.10),

(i) let v be the lift of the loop p o 7 starting at yo,

(iii) then £(6=Y(yo) - £7(20)) = 7(1).
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3.2 The fundamental group of the circle and applications

We will now use this description to compute the group 71(S*, 1).

Theorem 3.2.1. Let v : I — S be the loop given by t — 2™ which is based at

1 € St Cc C. Then there is a group isomorphism w1(S*,1) = (Z,+) sending [u] to 1.

Proof. Recall from Example 3.1.4 that we constructed a covering space p : R — S via
p(t) = €2™. The space R is contractible, and so simply connected, so this is a universal
cover. As a set we have p~!(1) = Z C R, and we may choose #p =0 € Z = p~!(1) as a
basepoint. Acting on this basepoint then gives a bijection

(:m(SY1) — Z.

To compute £~ (m) we can choose the path @, : I — R given by ,(t) = mt, which
goes from 0 to m, so that £~1(m) = [p o @y,]. Then we find that

(07 (n) - £71(m)) = endpoint of lift of [p o @,,] starting at n
=endpoint of t —>n+mt: I - R

=n-4+m

Thus the multiplication law on Z = p~!(1) induced by / is the usual addition of integers.
Furthermore, ¢([u]) = 1. O

In the following theorem, we consider D? C C to be the set of complex numbers of
modulus at most 1.

Theorem 3.2.2. The disc D? does not retract to S* C D?.

Proof. Suppose that r : D> — S is a retraction, and let i : S — D? be the inclusion.
By definition of retraction, r o ¢ = Idg1, and so taking fundamental groups based at
1 € S' € D? we obtain a factorisation

72 m (S 1) 25 m (D% 1) 25 m(Sh 1) 2 7

of the identity map. But D? is contractible, and so m1(D? 1) = {[e1]} is the trivial
group. This is a contradiction, as the identity map of Z cannot factor through a trivial
group. ]

Corollary 3.2.3 (Brouwer’s fixed point theorem, 1909). Every continuous map f : D? —
D? has a fized point.

Proof. Suppose f is a map without fixed points. Then define a function r : D? — S' by
sending x to the first point on S! hit by the ray from f(z) through z. (This definition
makes sense only because we know that f(z) # x.) One may convince oneself that r
is continuous if f is. If x € S' C D? then such a ray will first hit S! at z, and so
r(z) = z. Thus 7 is a continuous retraction of D? to S', but this is impossible by
Theorem 3.2.2. O
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Theorem 3.2.4 (Fundamental theorem of algebra). Every nonconstant polynomial over
C has a root in C.

Proof. Suppose not, and let p(z) = 2" +a12" "1 +---+a, be a (monic) polynomial having
no root. Fix

. {|a1| +lag| + -+ + |an]
1
and note that on the circle |z| = r we have the estimate
2" =" > " (] + Jaz] + o 4 fan]) > lare" T -+ anl
Thus for ¢ € [0, 1] the polynomial
pi(2) = 2"+t (12" 4 Fap)

has no roots on the circle |z| = 7.
Consider the homotopy of loops in S* C C

_ pe(r - €¥™%) /py(r)
|pi (7 - €275) [py ()]

27ris)

F(s,t)

which is well-defined as the loop s — p(r - e is never 0. When ¢t = 0 this gives the
loop s+ ™8 which represents n € m1(S',1). When t = 1 this gives the loop

p(r - e>™*) /p(r)
Ip(r - e7) /p(r)]

in S1 C C, so we must have [f,] = n € m(S!, 1).

As p is assumed to have no roots, by varying r we see that f,. is homotopic to fy,
which is constant: thus [f.] = 0 € 71(S',1). Hence n = 0, and so the polynomial p is
constant. O

fr(s) =

3.3 The construction of universal covers

It practice we can often directly construct a universal cover of a given space X, but for
theoretical work we need a general construction.

Observation 1. Suppose that p : X — X is a universal cover, g € X is a basepoint,
and U > x¢ is a neighbourhood which is evenly covered, so p~}(U) = [per Vo and
each ply, : Vo — U is a homeomorphism. Fix some «. Then for any loop v : I — U
based at x( there is a lift to a loop 7 : I — V, based at &g = V, N p~!(xg). Thus the
homomorphism N

et (X, Zo) — m (X, x0)

sends [§] to [y]. But X is simply connected, being a universal cover, so [§] = [cz,] and
s0 [7] = [ez,)-

Thus if X has a universal cover, then any point x € X has a neighbourhood U,
so that any loop in U, based at z is contractible in X. This property is called being
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semilocally simply connected, and we have just argued that it is necessary in order
for a space to have a universal cover.

Observation 2. Suppose that p : X — X is a universal cover and zp = p(Zo) is a
basepoint. As X is simply connected, for any point y € X there is a unique homotopy
class of paths [a] from Z( to y, and [po ] gives a preferred homotopy class of path from
xo to p(y). Thus we can recover y as the endpoint of the lift of [p o o] starting at Zo,

which defines a bijection

T homotopy classes of paths in X
starting at xy and ending anywhere

We may use this bijection in order to construct a universal cover, when we don’t yet have
one.

Theorem 3.3.1. Let X be path connected, locally path connectegl, and semilocally simply
connected. Then there exists a covering map p : X — X with X simply connected.

Proof. (Non examinable.) As a set, define

s homotopy classes of paths in X
" | starting at zg and ending anywhere

with the function p : X — X given by p([v]) = 7v(1). We must construct a topology
on X , show that p is continuous in this topology, show that p is a covering map in this
topology, and show that X is simply connected.

Let us first construct the topology on X. Consider the set

U::{UCX

U is open in X, is path connected, and
m(U,z) = m1 (X, x) is trivial for all z € U |~

Claim: U is a basis for the topology on X.

Proof of claim. Let V be an open neighbourhood of a point z € X.

(i) As X is semilocally simply connected there is a neighbourhood U’ 5 x such that
m (U, z) — m (X, x) is trivial.

(ii) As X is locally path connected there is an open neighbourhood z € U C V. N U’
which is path connected.

(iii) The map 71 (U, z) — 71 (X, x) factors through the trivial map w1 (U’, z) — 71 (X, x),
so is trivial.

'Recall from Example Sheet 1 that X is locally path connected if for every point € X and every
neighbourhood U 3 z, there exists a smaller neighbourhood x € V' C U such that V is path connected.
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(iv) Let y € U be another point, and v : I — U a path from z to y. Then we have a
commutative square
7T1(U, y) - Wl(Xv y)

Uy lu#
m (U, ) <% (X, @)
where the vertical maps are isomorphisms, so the top map is trivial too.

Thus U is a neighbourhood of x contained in V' which is in the collection U, and hence
U is indeed a basis for the topology on X. O

Note that if z,y € U € U then there exists a path from z to y in U, and all such
paths are homotopic in X. For a [a] € X and a U € U such that a(1) € U, define

(@0) = {1 e X

[8] = [a - /] for some path
o/ in U starting at (1) )

Claim: These sets form a basis for a topology on X.

Proof of claim. We must check that [§] € (g, Up) N (a1, Ur) has a neighbourhood of this
form.

Let W C Uy N U; be a neighbourhood of §(1) € Uy N U; in the collection U, which
exists as U is a basis for the topology on X. Then (3,W) is a neighbourhood of [f],
and it is enough to show that (8, W) C (ag,Up) N (a1, Us). If [y] € (B, W) then it is a
concatenation of 8 and a path in W, but then it is a concatenation of oy and a path in
Up too; similarly, it is a concatenation of oy and a path in Uj. ]

We give X the topology generated by this basis.

Let us now show that p is continuous in this topology; as U is a basis for the topology
on X, it is enough to show that p~!(U) C X is open for each U € Y. But if [o] € p~1(U),
so « is a path starting at xg and ending in U, then [a] € (o, U) C p~1(U).

Let us now show that p is a covering map. We first claim that each map

Pl : (,U) = U

is a homeomorphism. It is surjective as U is path connected, and hence every point in
U may be reached by a path from «(1). If [g],[8'] € («,U) are homotopy classes of
path which end at the same point, and each may be obtained from « by concatenation
of a path in U, then they differ by concatenation of a loop in U. As every loop in
U is contractible in X, it follows that [3] = [8'] and so the map is injective. Finally
p((7,V)) =V, so p is an open map, and hence p|(,,1) is too.

We now claim that p~!(U) is partitioned into sets of the form (a, U). We have already
show that it is covered by sets of this form, so it remains to show that any two such sets
are either disjoint or equal. Thus suppose [y] € (a, U)N(B,U). Then [7] = [a-a'] = [3-F]
for paths o/ and 8’ in U, and so [a] = [B- B - (/)7!] and ' - (&/)~! is a path in U, so
[a] € (8,U). But then if [§] € (a,U), so [§] = [a- "], then [§] = [B- 5 - (a/)~! - "]
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and so [0] € (8,U). Thus (a,U) C (8,U), and the reverse inclusion follows by the same
argument.

Finally, we must show that X is simply connected. The fundamental observation is
that if v : I — X is a path starting at xg, then its lift to X starting at [cg,] € X is the
path

s [t y(st)] : T — X,

which ends at the point [y] € X. Thus if a loop v in X based at z lifts to a loop in X
based at [cz,] then [y] = [cz,], which shows that p.(m1(X,%0)) = {e} < m1(X, z0). But
then by Lemma 3.1.14 the group (X, Zo) must be trivial. O

3.4 The Galois correspondence

We have seen in Lemma 3.1.14 that if p : X > Xisa path connected covering space,
x9 € X and T ENp_l(xg), then p, : m (X, Zo) — m1(X, xo) is injective, and we obtain a
subgroup p.(m1(X, Zg)) < m1(X, xo).

If &, € p~!(xo) is another point, then choose a path v from Z to &. Then po~ is a
loop in X based at z, so we have an element [po~] € m1 (X, z0), and

por]™t pu(m(X, %)) - [por] = pulmi (X, &)

i.e. the subgroups obtained from these two basepoints in X are conjugate. Thus fixing a
based space (X, xg) we obtain functions

{ based covering maps

d ) o
p: (X, %0) = (X, o) }—> {subgroups of (X, o)}

and

~ . | ¢
{covering maps p: X — X} N { conjugacy classes o }

subgroups of 7 (X, xo)

We wish to show that dividing out by an appropriate equivalence relation on the left
hand side turn both of these functions into bijections.

Proposition 3.4.1 (Surjectivity). Suppose that X is path connected, locally path con-
nected, and semilocally simply connected. Then for any subgroup H < m (X, xq) there is
a based covering map p : (X,Zo) — (X, x0) such that p.(m1(X,Z0)) = H.

Note that taking H to be the trivial group, this proposition implies the existence of
a universal cover. Thus it requires all the technical hypotheses of Theorem 3.3.1.

Proof. Let ¢ : X — X be the universal cover constructed in Theorem 3.3.1, whose
underlying set consists of the homotopy classes of paths in X starting at zy. Define a
relation ~z on X by

]~ Y] 4(1) =4'(1) and [y (¥)7'] € H € m(X, z0).

(i) ] ~u [ as [ezy] € H,
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(i) if [y] ~m [¥/] then [y- (/)7'] € H, and so [y - y~'] € H, and hence [y] ~x [1],

(iii) if [y] ~u [V] ~g [Y'], then [y - (¥)7Y, v - (")~"!] € H and so the product
[v-(v")7'] € H too.

Thus ~p is an equivalence relation. (We could have defined ~p for any subset H of
71(X, o), but this argument shows that such a ~ is an equivalence relation if and only
if H is a subgroup.)

Let us define Xy := X/ ~py to be the quotient space, and py : )?H — X to be the
induced map. Note that if [y] € (a, U) and [y] € (8,U) have [y] ~g [y'] then (o, U) and
(8,U) are identified by ~p, as [y-n] ~g [y -n] for n a path in U. Thus py is a covering
map. N

It remains to show that (pu).«(m1(Xu,[[cz,]])) = H. If [y] € H then the lift if 5 of
v to X starting at [c,,] ends at 4], so the lift to Xp ends at [[y]] = [[cz,]] s0 is a loop.
This shows the containment 2. On the other hand, if [y] = (pu)+([7]) for ¥ a loop in
X, then the lift of 4 to X starting at [c,,] ends at [y]. As 7 is a loop in Xp, [y] must
be identified with [cg,], so lies in H; this shows the containment C. O

Proposition 3.4.2 (Based uniqueness). If
p1: ()Nfl,i‘l) — (X,z09) and py: ()N(QJ:Q) — (X, z0)
are path comnected covering spaces, then there is a based homeomorphism
h (X1,81) — (Xa, i)
such, that py o h = py if and only if (p1)«(m1(X1,%1)) = (p2)«(m1 (X2, &2)).

Proof. If h exists, we have (p1)« = (p2)« © hs and h, is an isomorphism, so (p1). and

(p2)+ have the same image. N
For the converse direction, let H := (p1)«(m1(X1,71)); it is then enough to give a

based homeomorphism A : (X, [[cz]]) = (X1,71). We begin with the map
r i (X, [eay]) — (X1, 1)

given by sending the point [y] to the end point of the lift 4 of 7 to X, starting at Zi.
Now

r([Y]) = r([y/]) <= 7 and 7' end at the ssame point in X;
— [’}/ : ’7_1] S 71(5(:1,@1) =H
<= [ ~u V]

and so the map r descends to a continuous bijection
q: (Xg, [[ex]]) — (X1, 71)

of covering spaces over (X, zp). This map is also open, as both covering maps to X are
local homeomorphisms, and so ¢ is a homeomorphism. O
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Proposition 3.4.3 (Unbased uniqueness). If
p1:)~(1—>X and pg:)?g—)X
are path comnected covering spaces, then there is a homeomorphism
h: )?1 — )?2

such that py o h = py if and only if (p1).(m1(X1,31)) is conjugate to (p2)(m1 (X2, i2))
for some &; € p; *(x).

Proof. If h exists, choose a #1 € p;'(z¢) and let 2 = h(#1). With these basepoints
everything in sight is based, and so (p1)«(71(X1,21)) = (p2)« (71 (X2, Z2)).
Conversely, suppose we have chosen 1 and Iy such that

71 (1)« (71(X1, 21)) - [1] = (p2)u(m1( X2, 2))

for some [y] € m — 1(X, zg). If we lift v starting at Z; then it ends at some &) € X1, and

(p1)w(m1(X1,#))) = (p2)s (M1 (X2, 2)).

Then the previous proposition gives a based homeomorphism 5 : ()Z' 1,Z)) — ()?2, Z9). O
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Some group theory

4.1 Free groups and presentations

Let S = {s4}acs be a set, called the alphabet, and let S™! = {s,'},es (We suppose
that SN S~! =0). A word in the alphabet S is a (possibly empty) finite sequence

(5131,.%'2, e 7:(:77,)

of elements of SUS™!. A word is reduced if it contains no subwords

(savsa’) or  (s3',sa):

An elementary reduction of a word (x1,...,%;, Sa, 55", Tit3, . - ., Tn) means replacing
it by (x1,...,%i, Ti43,. .., %), and similarly with words containing (s;!, s4).

Definition 4.1.1 (Free group). The free group on the alphabet S, F(S), is the set of
reduced (possibly empty) words in S. The group operation is given by concatenating
words and then applying elementary reductions until the word is reduced.

It is not really clear that this group operation is well-defined, or that it is associative.
It is clear though that it is unital

() (z1,22,...,2n) = (1,22, ..., 2y) = (1, Z2,...,2y) - ()

and that it has inverses

(1,22, ..,2p) - (x;l,x;il, ... ,xfl) = ().

In Section 4.2 we give an alternative description of F'(S) which is obviously a group, and
show it agrees with that of Definition 4.1.1.

By construction there is a function ¢ : S — F(S) given by sending the element s, to
the reduced word (s,).

Lemma 4.1.2 (Universal property of free groups). For any group H, the function

group homomorphisms R Sfunctions
p0:F(S)—>H p:S—H |’

given by precomposing with ¢, is a bijection.

Proof. Given a function ¢ : S — H we want a homomorphism ¢ such that ¢((s,)) =
®(sq). But there is a unique way to do this, by defining, on not necessarily reduced
words,

(850 80)) = D(501)" -+ P80, )"

28
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Note that if (s&.,...,s5 ) is not reduced, so contains for example (sq,s;'), then the
product ¢(sa, ) - -+ ¢(8a,, )" contains ¢(s4) ¢(so)~! = 1 and so we may reduce the word
(s&,...,s& ) without changing the value of ¢ on it. As the group operation in F(.5) is

ay? 7 an
given by concatenation and reduction of words, this shows that ¢ is a homomorphism. [

Definition 4.1.3 (Presentation). Let S be a set and R C F(S) be a subset. The group
(S| R) is defined to be the quotient F'(S)/((R)) of (S) by the smallest normal subgroup
containing R. More concretely,

(R)) = {(ry)? - ()% - ()" | 1i € R, e € {+1}, 9 € F(5)}.

We call (S| R) the group with generators S and relations R, and call the data (S, R) a
presentation of this group. If S and R are both finite, we call it a finite presentation.

Informally, we consider elements of (S|R) as words in the alphabet S, up to the
relation that we may apply elementary reductions (or the converse) and cancel out any
subword lying in R (or the converse).

Lemma 4.1.4 (Universal property of group presentations). For any group H, the func-
tion

group homomorphisms functions ¢ : S — H such

v:(S|R) - H that p(r) =1 for eachr € R |’

given by sending v to the composition ¢ : S = F(S) augt (S| R) ¥ H, is a bijection

Proof. 1If 1) and ¢’ give the same functions ¢ = ¢’ : S — H, then by Lemma 4.1.2 the
two homomorphisms

quot ——\¢ N
F(S)—=(S|R)___H
Qb/

are equal, and as the quotient map is surjective it follows that 1) = ',

On the other hand, let a function ¢ : S — H be given such that the induced map
¢ : F(S) — H satisfied ¢(r) = 1 for all* € R. Then R C Ker(y), and Ker(y) is a normal
subgroup of F'(S) so ((R)) C Ker(yp) too (as ((R)) was the minimal normal subgroup
containing R). Thus ¢ descends to a homomorphism v : FI(S)/((R)) — H. O

Example 4.1.5 (The canonical® presentation). Let G be a group, and ¢ = Idg : G — G
be the identity homomorphism. By Lemma 4.1.2 there is an induced homomorphism
¢ : F(G) — G. This is certainly surjective, as the word (¢) maps to g € G, and we can
let R := Ker(¢). By Lemma 4.1.4 there is an induced homomorphism

v:(GIR) — G
which is an isomorphism (by the first isomorphism theorem).

By this example every group may be given a presentation, though of course this is
quite useless for practical work.

Lor “stupid"
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Example 4.1.6. Let G = (a,b|a) and H = (t|), and let us show that these groups are
isomorphic. First consider the function

¢:{a,b} — H
ar——e€
b — [t]

which satisfies p(a) = e and so defines a homomorphism ¢ : G — H. Now consider the
function

¢ {t} — G
t — [b]

which defines a homomorphism v : H — G.
Now ¢ o)/ ([t]) = ¥([b]) = [t], and as [t] generates H it follows that ¢ o)’ =Idy. On
the other hand 9" o ¢([b]) = ¥'([t]) = [b] and

P op(la]) =¢'(1) = e = [q]
in the group G, as a is a relation. As [a] and [b] generate G, it follows that ¢’ o) = Idg.

Example 4.1.7. Let G = (a,b|ab=3,ba"2). In this group we have [a] = [b]* and
[b] = [a]?, so putting these together [a] = [a]®, and multiplying by [a] ™' we get [a]® = e.
Thus using [b] = [a]? we can write every word in @ and b just using the letter a, and
using [a]® = e we may ensure that the largest power of a appearing is 4. Thus the group
G has at most 5 elements, e, [a], [a]?, [a]®, [a]*. Lets guess that it might be Z/5, and
prove this.

Consider the function

¢:{a,b} — Z/5
ar—1
b+— 2.

Then ¢(ab™3) =1-2-3=-5=0€Z/5 and p(ba~2) =2—2=0 € Z/5 so by Lemma
4.1.4 this gives a homomorphism

Y (a,b|ab3,ba™%) — 7Z/5.
This homomorphism sends [a] to 1 € Z/5 so is surjective, but we already argued that G
had at most 5 elements, so it is also injective: thus 7 is an isomorphism.
4.2 Another view of free groups

Fix a set S and let W be the set of reduced words in the alphabet S, and P(W) be the
group of permutations of the set W.
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Definition 4.2.1. For each « € I, define a function L, : W — W by the formula

1

Sy L1y L2y .. & if x st
Lo, 29, m) = (Sa, T1,22,...,Tp) . 1 7 o
(x2y...,xp) if z1 =s,".

Note that in the second case zo # s, otherwise (x1,x9, ..., 2,) would not be reduced.
Lemma 4.2.2. L, is a bijection, so represents an element of P(W).

Proof. Let (z1,...,2,) € W. If 11 = 5, then ma # s, 50 Lo (72, ..., 2n) = (T1,. .., 7p).
If 71 # 5o then (s;!, 21, ..., 2,) is areduced word, and Lo (s5 Y, 21, ..., 2n) = (21, .., 7).
Thus L, is surjective.

If Lo(z1,xo,...,24) = Lo(y1,Y2,-..,Ym) and this reduced word starts with s, then
Ty # s;' and y; # s, ', and so x; = y; for each i. If this reduced word does not start

with s, then 1 =y; = s;l, and
(an R 7'%'%) = La(.%'l,.%'g, cee >$n) = La(y17y27 cee 7ym) = (y27 R ,ym),

50 (xl)xQ)”'al‘n):(ylvyzu"'vym)~ O

We can now give an alternative definition of the free group, which is manifestly a
group.

Definition 4.2.3 (Free group). The free group F'(S) is the subgroup of P(W') generated
by the elements {Lq}acr-

Lemma 4.2.4. The function ¢ : F(S) — W given by o — o - () is a bijection.

This identifies F'(S) with the set of reduced words W in the alphabet S, and shows
that the group operation is given by concatenation of words followed by word reduction.
Thus the definition given in Definition 4.1.1 is indeed a group.

Proof. If (sgl,...,sq ) is a reduced word, with ¢; € {1}, then
(861 S€n) :Lgl1 LZZL . () :(b(L(exll LZ:L),

aq? 7T 0n

and so ¢ is surjective.
As the {Lq }aer generate F'(S), any element o may be represented by a concatenation

o=L - L§ € P(W).

As Lo- L7t =1dy and L3t L, = Idyy, if the word (5§, ..,sq ) is not reduced then we

» Py
can simplify Lg! --- Lg» while giving the same element o € P(W). Thus we may suppose
that any o is represented by Ll --- Lg such that the associated word (sgl,...,sg ) is

reduced. But then
¢(0) =0- () = (3217 cee 73(6321)7

from which we can recover o = L --- Lgr ; which shows that ¢ is injective. O
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4.3 Free products with amalgamation

Let H, G1, and G5 be groups, and let
G < H-2.q,

be homomorphisms. Suppose that we have presentations G; = (S; | R;) (which is no loss
of generality, by Example 4.1.5). Then the free product of G; and Gs is

G1x Gy := <51U52’R1UR2>.

The functions S; — S1 U Sy — F(S7 U S2) — G1 * G2 and Lemma 4.1.4 give canonical
homomorphisms

GlLGl*GQ#GQ

and we define the free product with amalgamation over H to be the quotient
Grxp Go == (G x G2) /((jrin (h) (jaiz(h)) ' | h € H)).

Note that the free product is the free product with amalgamation for H = {e}. By
construction, the square

H—" .

-

GQ#Gl *H G2

commutes, that is jj o4y = jo o9 : H — G xg Go.

Lemma 4.3.1 (Universal property of amalgamated free products). For any group K the

Sfunction
group homomorphisms _, ] group homomorphisms ¢1 : G1 = K
¢:Grxg Go > K and ¢ : Go — K such that ¢1 011 = ¢2 019

given by sending ¢ to ¢1 = ¢ o j1 and ¢o = ¢ o jo, is a bijection.
Proof. Given ¢, and ¢s, define 6 : F(S1USy) — K via the function

qZ:Sl US; — K
s € Si— 0i((9)).

If r € Ry then o(r) = dp1(r) = e as [r] = e € G1 = (51| Ry); similarly for r € Ra.
Thus ¢ descends to a homomorphism ¢ : G1 * Go — K. Finally, for h € H we have

d(jri1(h) (jaiz(h)) ™) = @(j1i1(h))P(jaiz(h)) ™ = ¢rir(h)(daiz(h)) ' =e

and so ((j1i1(h)(jaiz(h))~ | h € H)) lies in Ker(¢), so ¢ descends to a homomorphism
¢ : G1 g Gy — K as required. O
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The Seifert—van Kampen theorem

5.1 The Seifert—van Kampen theorem

Let X be a space, A, B C X be subsets, and g € AN B be a point. There is then a
commutative diagram
7T1(Aﬂ B,Jjo) Hﬂ'l(A,ﬂZo)

i |

m1(B, xo) 1 (X, zo)

where all the homomorphisms are those induced on the fundamental group by the natural
inclusions. By the universal property of amalgamated free products (Lemma 4.3.1) there
is a corresponding homomorphism

¢ : T1(A, %0) *5, (ANBo) T1(B,T0) — m1 (X, z0).

The Seifert—van Kampen theorem concerns conditions under which this homomorphism
is an isomorphism.

Theorem 5.1.1 (Seifert—van Kampen). Let X be a space, and A, B C X be open subsets
which cover X and such that AN B is path connected. Then for any xg € AN B the
homomorphism

¢ : m1(A, 20) *r, (ANB,w) T1(B, x0) — 71 (X, x0)

is an isomorphism.
Before giving the proof of this theorem, we give some important examples.

Example 5.1.2 (Spheres). Consider the sphere S™ for n > 2. This may be covered by
the open sets
U:={(z1,22,...,2p41) € S" | Tpt1 > —1}

Vi={(z1,72,...,2n41) € S" |Tps1 < 1}

the complements of the north and south poles. Each of these is open, and stereographic
projection shows that they are homeomorphic to R™ and so contractible. Finally, cylin-
drical projection gives a homeomorphism

UNnv 85" x(-1,1)
and as n > 2 this is path connected. Thus by the Seifert—van Kampen theorem we have
7T1<Sn7w0) = {6} *7T1(UﬂV,:to) {6}

and so 71(S™, xg) = {e}. Thus the n-sphere is simply connected for n > 2.

33
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Example 5.1.3 (Real projective space). Recall that we have shown that the quotient
map p : S — RP" is a covering map, with two sheets. If n > 2 then S™ is simply
connected, by the previous example, and so this is the universal cover of RP". By Lemma
3.1.15 (iii), there is then a bijection between the group 71 (RP", xq) and the set p~! (o)
with two elements: there is only one group of cardinality two, so w1 (RP", z¢) = Z/2.

For based spaces (X, ) and (Y,yp), the wedge product X VY is the quotient
space of X LI'Y by the relation generated by xg ~ yo. This common point is taken to be
the basepoint of X VY.

Example 5.1.4 (Wedge of two circles). Let the circle S* C C have the basepoint 1 € S?,
and consider the space SV S with basepoint g the wedge point. Let us take the open
cover

U:=8'v(Ss'\{-1}) V:i=(s"\{-1})vs.

As ST\ {—1} deformation retracts to the basepoint 1 € S, notice that U deformation
retracts to S1V {1} = S, V deformation retracts to {1} V.S, and UNV = (S*\{-1})V
(S1\ {—1}) deformation retracts to {x¢}. Thus by the Seifert-van Kampen theorem we
have

(ST V S o) = m (ST V {1}, z0) * i ({1} V ST, 20).

If we let a be the standard loop around the first circle and b be the standard loop
around the second circle, as shown above, we thus have

7T1(Sl vV Sl,l‘o) > (a,b]),
a free group on two generators.

This is our first example of a space with a really complicated fundamental group. Let
us apply the theory of Section 3.4 to it, to investigate some of its covering spaces.

Example 5.1.5. The function
¢:{a,b} — 7Z/3

a—1
b—1

induces a surjective homomorphism ¢ : w1 (S v S %) = (a,b|) — Z/3. Thus K :=
Ker(¢p) is an index 3 subgroup of 71 (S* Vv S1,%). By the results of Section 3.4 there is a
corresponding unique based covering space

p: (X, %) — (ST Vv St %)

with p,(m1 (X, 40)) = K < m(S* v S1,%). Let us work out what it looks like.
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By Lemma 3.1.15 (iii), the group m1(S' v S!, %) acting on the point Zo € p~!(%)
induces a bijection

™1 (Sl V Sl, *)

ps(m (X, 20))

and so p is a 3-sheeted cover, because p, (7 ()Af ,Zo)) = K has index 3. The 3 elements of
p~ (%) are thus identified with the right cosets of K, lets say &9 = K, Ka, and Ka?.

Each of the edges a and b in S' Vv S! has 3 lifts to edges in X , and we wish to know
where these go from and to. This is easy: if z € m(S' vV St %) = (a,b|) is a word in a
and b, then lifting it starting at the point Ky € p~!(*) gives a path ending at Kyz.

Thus the lift of a starting at K ends at Ka, the lift starting at Ka ends at Ka?, and
the lift starting at Ka? ends at Ka® = K. Similarly, the lift of b starting at K ends at
Kb = Ka, the lift starting at Ka ends at Kab = Ka?, and the lift starting at Ka? ends
at Ka’b = K. Thus the covering space X looks like

—p (%)

Ka

b b
_—
k<Y ke

b
where the labels on the edges show to which edge in S' Vv S' they map to.
Example 5.1.6. The function

¢:{a,b} — Z/3
a—1
b—0

induces a surjective homomorphism ¢ : m (St Vv St %) = (a,b|) — Z/3. Thus K :=

Ker(yp) is an index 3 subgroup of (S 1'v 81 %), and there is a corresponding covering
space p : (X,Zo) — (S'V S!,%). The same analysis as in the last example gives the

b

covering space

Example 5.1.7. The universal cover of SV S! may be described as the infinite 4-valent
tree (i.e. graph with no loops), where each vertex has a copy of the edge a coming in, a
copy of the edge a going out, a copy of the edge b coming in, and a copy of the edge b
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%I
+
Q—
|
a
\
%

going out. This certainly describes a covering space of SV S1; it is easy to see that this
tree is simply connected, by showing that it is in fact contractible.

Let us now move on to the proof of the Seifert—van Kampen theorem.

Proof of Theorem 5.1.1. First observe that we may assume that A and B are also path
connected: if not, there is a path component of A or B which does not intersect AN B,
and so this lies in a different path component of X to xy. Hence loops based at xg cannot
reach it, so removing it does not change any of m1(A, o), m1 (B, xo), m1(A N B, xg) or
m1(AU B, x9).

The map ¢ is surjective. Let v : I — X be a loop based at g, so {y~}(4),7y 1 (B)} is

an open cover of I; let % be a Lesbegue number for this cover. Then each path 'Y‘[i i
n’n

has image entirely in A or entirely in B (or both). If subsequent path pieces | ; i+1 |
n’n

and | j+1 s+2, both lie in A or both lie in B then we may concatenate them. Proceeding

b }
n n
in this way, we may express v as a concatenation i -7y, - - - 7y, where each 7;(0) and each

7i(1) lie in AN B.
Now for each point v1(1),72(1),...,vk—-1(1) € AN B choose a path wu; from ~;(1) to
g in AN B. Then + is homotopic to

(yr-ua) - (ug -y ug) - (ugy - k)

as a path, and so is a product of elements coming from 7;(A,zo) and 71 (B, xg), as
required.

The map ¢ is injective. By considering the description of the amalgamated free
product, the group 71 (A, z0) *x,(anB,wg) T1(B, 7o) has the following description. It is
generated by

(i) for each loop v : I — A, an element [y]4,
(ii) for each loop v : I — B, an element [y]z,

subject to the relations
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(i) if v ~ 4" as paths in A, then [y]4 = [7']4, and similarly for B,
(ii) if v,7" : I — A then [y]a - [¥]a = [v-7']a, and similarly for B,
(iii) if v: I — AN B is a loop then [y]4 = []B-

Let S1,...,S, be a sequence of elements of {A, B}, and v; : I — S; be a sequence of
loops based at xg, and suppose that

¢(Inlsy - [r2ls, - - [nls,) = [ezo] € (X, 20).

Temporary definition. For a sequence vi,7vs2...,7, of loops based at xg, let ~; -
9 -+ + Y, unbracketed, be the concatenation formed by cutting I into n pieces of length
%, and running each path +; n times as fast.

By assumption y1 -7y - - - yp = ¢4, as paths in X; let H be a homotopy between them.
We can subdivide I x I into squares of side length % for n | N so that H sends each
square entirely into A or entirely into B. Choose for each square a label A or B saying
into which set it is mapped (some squares will admit either choice, and some not).

For each point (%, %) € I'x I choose a path u; ; from H(%, %) to g, such that if (&, %)
is a corner of a square with label A then the path w; ; lies in A, and if it is a corner of a
square with label B then the path u; ; lies in B (so if it is a corner of squares with both

labels then the path lies in AN B).

Step 1. For the path H]| ; . which ends at (4 %), there is a homotopy to the

[ﬂ K2 « L N>
. N NIXN
path Uy H][Z»_l il -u; ; which ends at xg given by
N 'NIXN
“z_—ll,j H‘[% FIx& Ui

B
2f
2
zp
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This homotopy can be taken to lie in A if either the square above or below [%, ﬁ] X %
is labelled A, and similarly for B, as the paths u;_1; and wu;; then lie in the required
subspace. Call this homotopy h; ;, and write ﬁm for the reverse homotopy.

Ifi—1 =0 or¢= N the homotopy can be suitably modified, as then the path

; already starts or ends at xo.

N 'NI™ N

Step 2. Form a homotopy by gluing together the homotopies h; o as shown.

hl.(] EQ,O E3,0 54‘0

This shows that each path ~; in S; may be homotoped (in S;) to be the composition of

N/

N/n loops v} - 42 ---~;'" given by

—1 -1
(7i|[07%] : u(ifl)nJrl,O) : (u(i—l)n+1,0 : 71|[%72W"} ’ u(ifl)nJrQ,U) U (uin—l,O ’ ’7i|[NJ§n,1])

and so [vils, = [¥i]s, - ['yZN / "]s, in the amalgamated free product. Thus it is enough to
show that
N, n N n n
(s 1) - (e 112 ™) -+ (bl -+ B ™))

is trivial in the amalgamated free product.

Step 3. We now form a homotopy by gluing together the pieces H| and

i=1 i, rJ=1 J
vty il walyd
| of the homotopy H

7—1

the homotopies h; ; and Ei,j together. For each row H |[0 1x]
b X 77

.

we form a homotopy G; by

hl,j h27]' h3‘_7' h47j

Hipo 1y

hij—1/\h2j—1/\P3,i—1/\ ha,j—1

Note that each column of the above maps entirely into A or entirely into B, and the
points i/N along the top or bottom all map to .

Step 4. As each column of the homotopy G; lies entirely in A or B, and has its four
vertices mapping to xg, it follows that the loop given by the top of each column in
homotopic to the loop given by the bottom of each column by a homotopy which lies
entirely in A or entirely in B. Thus the sequence of composable loops along the bottom
and the sequence of composable loops along the top represent the same element of the
amalgamated free product. As the sequence

(Mlss - ™) - (8lss - e Msa) - (ks - - (V™))
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arises as the bottom of Gy, this argument shows that it is equivalent in the amalgamated
free product to the sequence of composable loops arising from the top of Gxy_1. But by
reversing the argument of Step 2, the sequence of composable loops arising from the top
of Gy_1 is a refinement of the loop H(—,t), which was constant. O

5.2 The effect on the fundamental group of attaching cells
Let f:(S" 1 %) = (X, 20) be a based map, and
Y:i=XU;D"=(XUD")/2€ 8" 1 CD"~ f(z) € X.

We let yo = [zo] be the equivalence class of xg, so the inclusion i : X — Y is a based
map. Thus there is an induced homomorphism

ix s (X, 20) — (Y, y0)-
The space Y has an open cover by the interior of the disc
U :=int(D")
and the complement of the centre of the disc
V=X Uy (D" )\ {0}).
These satisfy U NV = S"~! x (0,1), which is path connected as long as n > 2.
Theorem 5.2.1.
(i) If n > 3 then the map i, is an isomorphism.

(ii) If n = 2 then the map i, is surjective with kernel the normal subgroup generated by

[f] € 7T1(X,$0)-

Proof. Choose a point y; € U NV C int(D"™), and a path v in D™\ {0} from y; to the
basepoint * € S"~1 C D" (which is identified with zo € X).

If n >3, then UNV ~ 8" ! is simply connected. By Seifert-van Kampen the map

¢ (U, 90) *r, (v T1(Voyr) — m(Yiy1)
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is an isomorphism, but both 71 (U N V,y;) and 71 (U,y1) are trivial and so the map
m1(V,y1) = m(Y,y1) is an isomorphism. Hence, the change-of-basepoint isomorphism
given by u shows that m(V,y9) — m1(Y, o) is an isomorphism. Finally, the inclusion
(X,z9) = (V,y0) is a based homotopy equivalence (by pulling D™\ {0} on to its bound-
ary), and the theorem follows.

If n =2 then UNV ~ 8! has fundamental group Z. The map

Z2mUnV,y) — m(V,y)

is seen to send the generator to the loop ux([f]). Thus, as m1(U,y1) = {e}, the Seifert—
van Kampen theorem shows that

¢ m(Viyr)/(uglf])) — m(Y y1)

is an isomorphism. Under the change-of-basepoint isomorphism given by the path u, and
again using that the inclusion (X, z9) — (V,yp) is a based homotopy equivalence, the
theorem follows. O

Example 5.2.2. The standard cell structure on the torus T has two 1-cells a and b
attached to a single vertex v, and a 2-cell attached along a loop given by a-b-a~1- b1
The 1-skeleton T is thus a wedge of two circles, so 71 (T, v) = (a,b|), and attaching
the 2-cell thus gives

(T, v) = (a,bla-b-a"t-b71).
One may easily check that this is a presentation of the abelian group Z x Z.

Corollary 5.2.3. For any group presentation G := (S| R) with S and R finite, there is
a 2-dimensional based cell complex (X, xzo) with m1(X,z0) = G.

Proof. Let Y be a wedge of |S|-many circles, each identified with an element of S. Let
Y have the wedge point as basepoint, and call it yg. For s € S let x5 € m1(Y,yp) be a
loop which transverses the sth circle precisely once. Then sending s to x5 gives a group
isomorphism

(S1) = m(Y, o).

Each element r € R C (S|) is represented by a word in the alphabet S, and so by an
element of (Y, y). Let 4. : I — Y be aloop in Y such that [y]] corresponds to r under
the isomorphism above, and ~, : (S',1) — (Y, o) be the map from the circle obtained
by gluing the endpoints of I together. By Theorem 5.2.1 attaching a 2-cell to Y along
v has the effect of dividing out by the normal subgroup generated by [v,]. Thus if we
attach a 2-cell along 7, for each r € R to form a cell complex X, with xy = [yo], then we
have

m (X, z0) = (Y, 90)/{{[w], 7 € R))
But this is precisely the description of (S| R). O

The assumption that S and R are finite may be removed, by developing the Seifert—
van Kampen theorem for covers by infinitely many open sets such that every possible
intersection of them is path connected. Hence every group occurs as the fundamental
group of a 2-dimensional cell complex (possibly having infinitely many cells).
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5.3 A refinement of the Seifert—van Kampen theorem

The requirement in Theorem 5.1.1 that A and B be a pair of open sets does not fit with
how one typically wants to use the theorem. In this section we shall describe weaker
hypotheses that are usually more convenient.

Definition 5.3.1. A subset A C X of a space X is called a neighbourhood deforma-
tion retract if there is an open neighbourhood A C U C X and a strong! deformation
retraction of U onto A.

Theorem 5.3.2. Let X be a space, and A, B C X be closed subsets which cover X and
such that AN B is both path connected and a neighbourhood deformation retract in both
A and B. Then for any xg € AN B the homomorphism

¢ : (A, 0) 5, (ANBo) T1(B,T0) — m1(X, 20)
is an isomorphism.

Proof. Choose open neighbourhoods ANB C U C Aand ANB C V C B which strongly
deformation retract to AN B. Now the complement of AUV in X is B\ V, which is
closed as V' was open in B; thus AUV is open in X. Similarly U U B is open in X. The
strong deformation retraction of V' to A N B shows that the inclusion A — AUV is a
homotopy equivalence, and similarly for B — U U B.

Finally, (AUV)N(UUB) = U UV and the strong deformation retractions of U to
AN B and V to AN B glue together to give a (strong) deformation retraction of U UV
to ANV.

We may now apply Theorem 5.1.1 to the open cover given by AUV and UU B, which
by the above discussion has (AUV)N(UU B) =U UV ~ AN B path connected. The
theorem then follows from noting that the maps

(A, z9) — T (AUV, 20)
7'['1(B,£L’0) — 7T1(UUB,{L‘Q)
T (AN B,z9) — m (U UV, xg)

are all isomorphisms. O

Recall that for based spaces (X,xg) and (Y,y) the wedge product X VY is the
quotient space of X LY by the relation generated by x¢ ~ yo. If the subspaces {zo} C X
and {yo} C Y are neighbourhood deformation retracts? then it follows from Theorem
5.3.2 that

T (X VY, [xo]) = m1 (X, xo) * m1 (Y, y0)-

!That is, a homotopy from Idy to a map 7 : U — A, which is constant when restricted to A.
2Some authors say that a based space (X,zo) is well-based if {0} C X is a neighbourhood
deformation retract.
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Example 5.3.3. The based space (S',1) has {1} C S! a neighbourhood deformation
retract, and so

m(STV SY[]) 2 (Sh 1)« m(SY, 1) 2 Z*Z 2 (a,b])

is a free group on two generators. By induction on n, for any finite n we thus have

n

m(\/ S [1) = (21,22, a ),

a free group on n generators.

5.4 The fundamental group of a surface

Example 5.4.1 (Orientable surfaces). Consider the based space (X, zg) obtained from
the torus by removing an open triangle, as shown

a

o a )
By stretching the hole, we see that the inclusion
L: (51 v St [1]) — (X, zo)

of the loops a and b is a based homotopy equivalence. Thus we have 71 (X, z0) = (a,b]).
The loop r given by the boundary of the open disc we removed represents the class
[a,b] := aba=1b~1 € 71(X,x), if we orient it as shown in the figure above.

T2

fo

Gluing g copies of X together as shown above gives a based space (Fy, fy). As the
gluings are performed along intervals, which are contractible and are neighbourhood
deformation retracts in X, Theorem 5.3.2 shows that there is an isomorphism

7Tl(-F‘gufO) = <a17b17a25b27 cee ,(Ig,bg ‘>
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where a; and b; are the loops a and b in the ith copy of X. The boundary of Fj is a
circle, and the loop it represents is given by r - ro--- 74 € w1 (Fy, fo), the product of the
boundary loops on the individual copies of X. In terms of the generators a; and b;, the
boundary loop is thus [[%_,[a;, b;]. Attaching D? to Fy gives a closed surface ¥4, and by
Theorem 5.2.1 we have

g
7T1(Zg) = (ay,b1,a2,ba,... ,ag,bg\ H[a“bl]>
=1

Example 5.4.2 (The projective plane again). First recall from Example 5.1.3 that we
have shown that 7 (RIP2, zg) is Z/2. Let us try to understand the generator of this group.

a
Yo

Yo a

The description of RP? as a quotient space of S? also shows that it may be obtained
from D? (thought of as the upper hemisphere of S?) by dividing out by the equivalence
relation

reS'cD?*~ —zeS'cD?

given by identifying opposite points on the boundary of D?. If we give D? the cell
structure shown in the figure above then we see that there is an induced cell structure
on RP? having a single O-cell, a single 1-cell, and a single 2-cell. If the loop around the
1-cell is called a, we see that the fundamental group of RP? has the presentation

71 (RP?, z0) = {a|a?).

Example 5.4.3 (Nonorientable surfaces). Consider the based space (Y,yg) obtained
from RP? by removing an open triangle, as shown

IR

Yo

12

By stretching the hole, we see that Y is homotopy equivalent to S', and so (Y, o)
{a|). The boundary loop r is now given by a?.
Gluing n copies of Y together as shown gives a based space (Ey, eg) with 71 (Ey, €g)

{a1,as,...,a,|), and with boundary loop given by r1 - 79 -+ -7, = a2a3---a2. Hence, i

12

-
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we form the closed surface S, by attaching a copy of D? to E, along its boundary, we
have

771(‘971) = <a17a27 . 'aan’a%a% o ai)
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Simplicial complexes

6.1 Simplicial complexes

Definition 6.1.1. A finite set of points ag, a1,...,a, € R™ are affinely independent

if
{Ztiai =0 and Zti = 0} 54 (t(),tl,. . .,tn) = 0.
=0 =0

Lemma 6.1.2. The set ag,a1,...,a, € R™ are affinely independent if and only if the
vectors a1 — ag, a2 — Gg, - - - , Gy, — ag are linearly independent.

Proof. Suppose that the ag,ay,...,a, € R™ are affinely independent, and that

n

Z si(ai — ao) =0.

=1

Then (— > si)ag + s1a1 + -+ - + span, = 0 and the sum of the coefficients is 0, so by
definition of affinely independent we must have s; = 0 for all ¢, so the vectors a1 —ag, as —
ag, . . .,a, — ag are linearly independent.

Suppose now that the vectors ay — ag,as — ag, . .., a, — ag are linearly independent,
and that there are ¢; with Y ' jtia; = 0 and ) ! jt; = 0. The second sum gives
toap = — Y~ ta;, and so we may rewrite the first sum as > | t;(a; —ap) = 0. As the
vectors a; — ag are linearly independent, it follows that ¢; = 0 for all ¢ > 1, but then
to=—> i t; is 0 too. O

Definition 6.1.3. If ag,a1,...,a, € R™ are affinely independent, they define an n-
simplex

n n
o =(ag,ai,...,a,) = {Ztiai| Zfi =1t > 0}
i=0 i=0

given by the convex hull of the points a;. The a; are called the vertices of o, and are
said to span o.

If z € (ag,a1,...,a,) then = can be written as © = >_;" ; t;a; for unique real num-
bers t; (the uniqueness follows from the affine independence). The t¢; are called the
barycentric coordinates of x.

A face of a simplex o = (ag,ai,...,a,) is a simplex 7 spanned by a subset of
{ag,a1,...,a,}; we write 7 < o, and 7 < o if 7 is a proper face of o.

The boundary of a simplex o, written Jo, is the union of all of its proper faces. Its
interior, written &, is o \ do.

45
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Lemma 6.1.4. Let o be a p-simplex in R™ and 7 be a p-simplex in R™. Then o and T
are homeomorphic.

Proof. Let o = (ag,a1,...,ap) and 7 = (bg, b1, ..., b,). Define a function

h:o—T
p p
Z tia; —> Z tibi
=0 =0

which is well-defined and a bijection, by the uniqueness of the barycentric coordinates
t;. As the vectors a; — ag are linearly independent, we may extend h to an affine map
h:R™ — R", so it is continuous. ]

Definition 6.1.5. A geometric (or euclidean) simplicial complex in R™ is a finite
set K of simplices in R™ such that

(i) if c € K and 7 < 0, then 7 € K,

(i) if 0,7 € K then o N7 is either empty or is a face of both o and 7.

Figure 6.1 a) a geometric simplicial complex; b) not a geometric simplicial complex.
The dimension of K is the largest n for which K contains an n-simplex. The
polyhedron |K| associated to K is the subspace of R™ given by the union of all the

simplices in K. The d-skeleton K4 of a simplicial complex K is the sub simplicial
complex given by the simplices of K of dimension at most d.

Note that a simplex is closed and bounded, so it is compact; as a polyhedron is a finite
union of simplices, it follows that it is compact. As R™ is Hausdorff, any polyhedron is
also Hausdorff.

Definition 6.1.6. A triangulation of a space X is a pair of a simplicial complex K
and a homeomorphism h : |[K| — X.

Thus if X has a triangulation it must in particular be compact and Hausdorff; this
is however not sufficient.
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Example 6.1.7. The standard n-simplex A" Cc R"*! is the simplex spanned by the
basis vectors ey, ea,...,e,11. It, along with all its faces, defines a simplicial complex.

Example 6.1.8. The simplicial (n — 1)-sphere is the simplicial complex given by the
proper faces of A", and all their faces. Its polyhedron is JA™ C R*+1.

Example 6.1.9. In R"*! consider the 2"*! n-simplices given by (£ey, *ea, ..., +en 1),
and let K be the simplicial complex given by these simplices and their faces. Define a
function

h:|K|cR"™ — g

T
T —
]

which is a bijection and continuous (it is the restriction of the map R"*!\ {0} — S”
given by the same formula) so is a homeomorphism (as the source is compact and the
target is Hausdorff). This defines a triangulation of S™.

a) b)

Figure 6.2 a) The polyhedron |K|; b) radial projection to the sphere.

Lemma 6.1.10. Any point of the polyhedron |K| lies in the interior of a unique simplex.

Proof. If x € |K| = Uyeko then certainly x lies in some simplex o, say with o =
(ag,at,...,ap). Thus © = >°F  tia;. If 7 < o is the face given by {a;|t; > 0} then we
have . = Y7 s;b; with 7 = (bo, b1, ...,by) and s; > 0 for all ¢, and so x is in 7.

If x € 7 too, then 7 N7 # (. Thus 7 N7’ is not empty, so is a face of both 7 and 7/.
But it contains an interior point of either simplex, so is not a proper face of either: thus
r=rn7 =171 O

Definition 6.1.11. For a simplicial complex K, let Vi denote the set of 0-simplices of
K, which we call the vertices of K.

Definition 6.1.12. A simplicial map f from K to L is a function f : Vg — Vf, such
that if 0 = (ag, a1, ..., ap) is a simplex of K, then the set {f(ao), f(a1),..., f(ap)} spans
a simplex of of L, which we call f(o). We will write f : K — L for a simplicial map.
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The reason for this perhaps surprising formulation is that the list f(ao), f(a1),..., f(ap)
is allowed to have repeats. Thus these elements to not need to be affinely independent,
they just need to become so when we throw away repeated elements.

Example 6.1.13. The function

f:A'CR? — A?2CR3
(1,0) — (1,0,0)
(0,1) — (0,0, 1)

defines a simplicial map, as does the function
g:A?* C R — Al c R?
(1,0,0) — (1,0)

(0,1,0) — (1,0)
(0,0,1) — (0,1).

(1,0) (0,1) (1,0,0) (0,0,1)
| :
(1,0,0) (0,0,1) (0,1,0) \
\ Z g
(1,0) (0,1)

(0,1,0)

Lemma 6.1.14. A simplicial map f : K — L induces a continuous map |f| : |K| — |L|,
and |g o f| =gl o |f]

Proof. For a simplex 0 € K, 0 = (ag,a1,...,ap), define

fo 10— |L]

P P
Ztiai — th‘f(az‘),
i=0 i=0

which is linear in the barycentric coordinates t;, so continuous.
If 7 <o then f; = f,|, so for simplices o and ¢’ we have fy|on0’ = fore’ = fo'loro’
and so the functions f, glue to a well-defined function

K| = o — 1L,
ceK

which is continuous by the gluing lemma. The formula for f, shows that |f| behaves as
claimed under composition. O
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Note that we can recover the simplicial map f from the continuous map |f| and the
subsets Vg C |K| and Vi, C |L|. Thus a simplicial map from K to L could also be
defined as a continuous map |K| — |L| which sends vertices to vertices and is linear on
each simplex.

Definition 6.1.15. For a point = € | K|,

(i) The (open) star of x is the union of the interiors of those simplices in K which
contain x,
Str(z) = | & cR™
xrEo
The complement of St () is the union of those simplices of K which do not contain
x: this is a polyhedron, so closed in |K|, so Stx(z) is indeed open.

(ii) The link of x, Lk (z), is the union of those simplices of K which do not contain z,
but are a face of a simplex which does contain x. This is a subpolyhedron of | K|,
so is closed.

Figure 6.3 Three examples of points x with their open stars (in grey) and links (dotted).

6.2 Simplicial approximation

Definition 6.2.1. Let f : |[K| — |L| be a continuous map. A simplicial approxima-
tion to f is a function g : Vi — V, such that

f(Str(v)) C Str(g(v))
for every v € V.

Lemma 6.2.2. If g is a simplicial approximation to a map f, then g defines a simplicial
map and f is homotopic to |g|. Furthermore, this homotopy may be supposed to be relative
to the subspace {x € |K||f(z) = |g|(z)} where the two maps already agree.

Proof. To show that ¢ defines a simplicial map, for each ¢ € K we must show that
the images under g of the vertices of o span a simplex in L. For z € & we have x €
Nuev, St (v), and so

fx)e () f(Str(v) € [ Strlg(w)).

’UEVO‘ ’UEVO‘
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Thus if 7 € L is the unique simplex such that f(x) € 7, then every g(v) is a vertex of 7,
and so the collection {g(v)|v € V,} span a face of 7, so span a simplex of L.

We now show that f is homotopic to |g|. If |L| C R™, we try to define a homotopy
by the formula

H:|K|xI—|L|
(2,8) > £+ f(2) + (1 - ) - |gl(@),
where the linear interpolation takes place in R”. This certainly defines a continuous
map to R™, and we must check that it lands in |L| C R™.

Let € ¢ C |K| and suppose that f(z) € 7 C |L|. If 0 = (ag, a1, ..., ap) then by the
argument above each g(a;) is a vetex of 7. Hence

P P
lgl(x) = |g] (Z ti%‘) = tig(a;)
=0 1=0
is a linear combination of vertices of 7, so lies in 7 too. But then f(x) and |g|(z) both

lie in 7, so the straight line between them does too. O

Definition 6.2.3. The barycentre of the simplex ¢ = (ag,ar,...,ap) is the point

o= W The (first) barycentric subdivision of a simplicial complex K is the

simplicial complex
K' = {<&07&17--'7a’p>|0i ceKandog<op <--- <O'p}.

We define the rth barycentric subdivision K" inductively as (K=Y’

aop — as = <a2)
(ao, az)

Figure 6.4 The barycentric subdivision of the 2-simplex (ag,a1,as2), with the simplex

—

({a2), {ag, az), (ag, a1, az2)) indicated in grey.

It is not obvious that the collection of simplices K’ described in this definition actually
forms a simplicial complex. To see that it does is rather involved, and we collect the
necessary arguments in the following proposition.

Proposition 6.2.4. The barycentric subdivision K' of a simplicial complex K is indeed
a simplicial complex, and |K'| = |K]|.
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Proof.
If 0p < 01 <--- < o0p then the §; are affinely independent. Suppose that

Let j = max{i|t; # 0}; then

7j—1

. ti .
0j = —Z ﬁU,‘ € oj-1,

i=0 7
so 0; lies in a proper face of o, which is impossible.

K’ is a simplicial complex. Let (6,01,...,6p) € K'. A face is given by omitting
some ¢;’s from o9 < 01 < --- < 0p, but omitting some 6;’s from such a sequence still
gives a sequence of proper faces.

Let o/ = (69,61, ..,0p) and 7" = (7o, 71, ..., T4), and consider ¢’ N7’. This lies inside
op N 74, which is a simplex 0 of K, and there are simplices

o' ={(60Nd,61N0,...,6,N8) and 7" = (FoN&F1NG,...,7,N5)

of K’ (where if 6; N § = () we ignore it). Now o' N7’ = ¢” N 7" C §, which reduces to the
case that everything lies within a single simplex of K, namely 4.
We now proceed by induction on the dimension of §, in cases:

(i) ¢” and 7 contain é: let " be the face of 0 obtained by removing 8, and similarly
7. Then ¢’ N 7" is the simplex spanned by 3’ N7 and §, and & N 7 lies in the
boundary 9§. This is smaller dimensional than §, so by induction we may assume
that 6" N7 is a simplex of K’, but then ¢” N 7" is too.

(ii) ¢” or 7" does not contain ¢: then ¢” N 7" C 94 lies in a smaller dimensional
simplex, so by induction we may assume it is a simplex of K’.

|K'| = |K|. Note that (6¢,61,...,0p) C op, so |[K'| C |K|. On the other hand, for
z € 0 = (ag,a1,...,ap) written as & = > ©_t;a;, we may reorder the a; so that t; >
ty >+ >t, Then

ap +a ag+ a1 +a
xz(to—tl)ao-f-Q(tl—tg) 0 ! +3(t2—t3)%+---
= (to — t1)(ao) + 2(t1 — t2)(ao, a1) + 3(t2 — t3){ao, a1, az) + - --
€ <<a0>, (ao,a1>,...,(ao,al,...,ap>>
which is a simplex of K’. O

We now consider the following construction, which compares K and K’. First note
that the vertices of K’ are precisely the barycentres of simplices of K, so there is a
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bijection Vi =2 K. Thus if we choose a function K — Vi which sends each simplex o
to a vertex v, of o, then we obtain a function

g: Vi — Vi

0 +— Uy
If (60,01, ...,6p) is a simplex of K’ then 09 < 01 < -+ < 0, and so all v,, are vertices
of 0, and 80 (Vgy, Voy, - - -, Vs,) is a simplex of K. Thus g defines a simplicial map.
Furthermore, if the point ¢ lies in a simplex 7/ = (7y,71,...,7,) € K', then ¢ € 7,

and so o is a face of 7,. In particular, v, € 0 C 7,,. Thus 7/ C 7, C Stx(v,), and hence
Stx(6) C Stk (vo),
so the simplicial map g is a simplicial approximation to Id : |[K'| — |K].
Definition 6.2.5. The mesh of K is
p(K) == max{|lvo — v1|| | {vo, v1) € K}.

We will use the mesh as a measure of how fine a triangulation is, and will need to
know that sufficiently many barycentric subdivisions will make the mesh as small as we
like.

Lemma 6.2.6. Suppose that K has dimension at most n. Then pu(K ™) < ()" (K,
and so p(KM) = 0 as r — oo.

Proof. This will follow by indutcion from the case r = 1. Let (7,6) € K/, so 7 < o as
simplices of K. Firstly we estimate

|7 — o] < max{|lv—¢&||v a vertex of o},

as the euclidean distance to a point on a simplex is maximised at the vertices. Now

write o = (vg, V1, .. .,Um), with m < n, and suppose that vy is chosen so that ||vg — J||
is maximal. Then we calculate
m
loo =61l = lloo — 4y Y will
=0
m
= v — e 2wl
=0
m
= sl D (vi =)
i=1
m
< D v —wol
i=1
< mril 'N(U)
< G u(K). O
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Theorem 6.2.7 (Simplicial approximation theorem). Let f : |K| — |L| be a continuous
map. Then there is a stmplicial map g : K — L for some r, such that g 1s a simplicial
approximation to f.

Furthermore, if N is a subcomplex of K and f| ) : |N| — [L| is already simplicial,
then we may choose g to agree with f|n| on Vn C Vi C Vi .

Proof. Consider the open cover {f~1(Sty(w))}wev, of |K|. This has a Lesbegue number
0 (with respect to the euclidean metric on |K|), and by Lemma 6.2.6 we may choose an
7 such that p(K () < 6. Then for each v € V() we have

St g (V) C By (v) C f(Str(w))

for some w € Vi, and setting g(v) = w we have

f(Stgw (v)) < Str(g(v)).

Thus g is a simplicial approximation to f.
For the addendum, note that if v € Viy then f(v) is a vertex of L, so by increasing r
we may in addition suppose that

St ) (V) C Byyxery(v) C fH(StL(f(v)))

for each v € Viy, and hence choose g(v) := f(v) for these v. O



Chapter 7

Homology

7.1 Simplicial homology

Definition 7.1.1. Let K be a simplicial complex, and O,,(K) be the free abelian group
with basis given by the symbols

{[vo, v1, ..., vn] |v0,v1,...v, span a simplex of K}.

Note that the v; are considered to be ordered, and they could span a simplex of dimension
less than n (i.e. the list could have repeats).
Let T,,(K) < On(K) be the subgroup generated by the elements

(i) [vo,v1,...,vy] if the sequence contains repeated vertices,

(ii) [vo,v1, ..., vn] —sign(o) - [Ve(0), Va(1)s - - - » Vo(n)] fOr @ permutation o of {0, 1,...,n}.
Then we define Cy,(K) := O, (K)/T,(K) to be the quotient group.
o g# n-simplices of K

Lemma 7.1.2. There is a (non-canonical) isomorphism Cy(K)

Proof. Choose a total order < on V. Then each n-simplex ¢ € K determines a canonical
ordered simplex [o] given by ordering the vertices a; of o so that ag < a; < -+ < ay.
This defines a homomorphism

¢ . Zn-simplices of K N On(K)

o+— [o]
and so a homomorphism

§Z5, . Zn—simplices of K — C, (K)

or—|o]].

For each symbol [ag, a1, ..., a,] there is a unique permutation 7 of {0, 1,...,n} such
that ar(g) < ar(1) < -+ < ar(y), and we write sign([ag, a1, .. ., a,]) := sign(7). Using this
we define a homomorphism

o On(K) N Zn-simplices of K
sign(|ag, a1,...,a,]) - {ag,a1,...,a if there are no repeats
[ao,a1, ,an]’_> g ([ 0, %1, 3 n]) < 0, 41, 3 TL> : P
0 if there are repeats.

By construction 7,,(K) < Ker(p), and so p induces a homomorphism

p/ . C (K) N Zn—simplices of K
1 Cn .

54
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Now it is easy to see that p' o ¢'(c) = o, and so p' o ¢ = Id. Furthermore if
[ag, a1, ...,ay] has no repeats then

Qb, © p,([a()?al? s an]) = Sign([a07a17 R an]) ’ [(aov ai,... ,(Ln>]

= Sign(T) ’ [aT(0)7 ar(1),--- ’aT(n)]

where 7 is such that a,) < arq) < -+ < ar(,), but in the quotient C,(K) this is
equivalent to [ag, a1, ..., ay]. Assymbols [ag,ar, ..., a,] with repeats are trivial in C),(K),
it follows that ¢' o p/ = Id. O

We now define a homomorphism

dn : On(K) — Onfl(K)
[’UQ,Ul, c. ,’Un] — Z(—l)i . [’U(],vl, ce ,17,', ce ,’Un],
=0

where [vg,v1,...,0;,...,v,] denotes the sequence obtained by removing v;.
Lemma 7.1.3. The homomorphism d,, sends T, (K) into T,,—1(K).

Proof. First note that dy,([vo, v1,. .., va] = sign(o)[Ve(0); V(1)) - - - > Vo(n)]) 18

n n
Z(—l)l[vo, Vlyewoy @i, ceey Un] — Z(—l)’sign(a)[va(o), Ug(l), N 7@0(1')7 oo ,vg(n)].
=0 =0
(7.1.1)
We must show that this is trivial in O,_1(K)/T,,—1(K).
If o =(j,7+ 1), sosign(o) = —1, then we compute
n ' 7—1 '
Z(—l)zsign(a) [’UO.(O), ce 760(7;)7 ey Ua(n)] = (—1)Z+1[’U0, ce ,QA}Z', <oy U1, V541, Vg, - ,Un]
=0 =0
+ (=1 o, -+, 01,05, Vg - U]
+ (_1)j+2[vov sy Uj—1, Uj41, Uj42, - - - 7Un]
n
+ Z (—1)2—’—1[1)0, ey U1, V41, Vjy e - ,ﬁi, ce
1=7+2

Now the terms in the first sum satisfy

[’Uo, v ,@i, sy Vi1, V541, U5, - -t ,?)n] = —[Uo, ces ,f)i, sy Vi—1,V5, V5415 - - - ,'Un] mod Tn—l(K>

and those in the second sum satisfy
[’U(), sy Vi1, V541, Uy o v ey f}i, NN Un] = —[’UO, sy Ui—1,V5, V5415 -+ -y @i, NN Un] mod Tnfl(K)

so in Op—1(K)/Th-1(K) we get

n n

Z(—l)isign(a) [’UU(O), ’Uo(l), ey @a'(i)v ey Ug(n)] = Z(—l)i[’vo, Viyenn, f)i, R ,?}n]
=0 i=0
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as required. This establishes that the element (7.1.1) is trivial in O,—1(K)/T—1(K)
whenever ¢ is a transposition: as any permutation o is a product of transpositions of
the form (7,7 + 1), it follows for arbitrary o.

Now suppose that we have [vg, v1,. .., v,] with v; = vj11. Then
j—1
dn([vo,vl,...,vn}) = (—1)1{’1}0,...,f)i,...,vj,’UjJrl,...,Un}

=0

+ (—1)][1]0, ey ey Vi1, V4T, - ,’Un]

+ (—1)J+1[Uo, sy ey V5,042, .0 ,’Un]

n

+ Z (=1)"[vo, .05, Vj415 -y Diy oo, Up)

i=j+2

but the middle two terms cancel out, and the outer two terms contain repeated entries
so lie in 75,1 (K). In general, if [vg,v1, ..., v,] with v; = vy then applying o = (j, k + 1)
reduces to the case k = j + 1. O
The consequence of this lemma is that d,, : Op(K) — Op—1(K) induces a homomor-
phism
dp : Cp(K) — Ch_1(K).
Lemma 7.1.4. The homomorphism dy—1 o dy, : Cp(K) — Cyp_2(K) is trivial.

Proof. We compute, at the level of O, (K),

dp—10 dn([vo, e ,Un]) =d,_1 (Z(—l)l . [vo, R ,Un]>

=0
n ' i—1
— Z(—l)’(Z(—l)k[vo, T I
=0 k=0
n—1
+ (—1)k[v0,...,ﬁi,...ﬁkﬂ,...,vn]>
k=i
The coefficient of [vg,...,04,...0p, ..., 0] is (=1)%(=1)® from k = a and i = b plus
(—=1)%(—=1)*~! from i = a@ and k + 1 = b. These cancel out, so d,,_1 o dp([vo, - - . ,vs]) = 0.
the symbols [vy, . .., v,] generate C,(K), so d,—1 od,, = 0. O

The consequence of this lemma is that we have the containment Im(d,,) C Ker(d,,—1).
Homology is the measurement of how different these two groups are.

Definition 7.1.5. The ith simplicial homology group of a simplicial complex K is

_ Ker(dy, : Cu(K) = Cpo1(K))
Hi(K) = Im(dp 41 : Cry1(K) = Cp(K))
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Example 7.1.6 (Homology of the simplicial circle). Consider the simplicial complex
K inside R? given by all proper faces of the standard 2-simplex A% C R3. If we write
{e1, e, e3} for the standard basis of R?, then K has simplices

(e1), (e2), (e3), (e1, €2), (e1, €3), (€2, €3).
Choosing the order e; < ea < e3 on the vertices, we obtain isomorphisms
Co(K) = Z{ed], [e2], [es]}
C1(K) = Z{[e1, e2], [e1, e3], [e2, e3]},

so both groups are free abelian of rank three, and have the bases shown. With respect
to these isomorphisms, we have

di([ei, e5]) = [ej] — [ed],

so in the given bases d; is given by the matrix

-1 -1 0
1 0 -1
0 1 1
Hence
Ho(K) = Z{le1], [e2], [es]}/(lei] — [ej] 14,5 € {1,2,3}) = Z
and

Hi(K) = Ker(d1) = Z{e1, e2] — [e1, e3] + [e2, 3]} = Z.
Also H;(K) =0 for ¢ > 2, as K has no simplices of dimension 2 or higher.

Example 7.1.7 (Homology of the 2-simplex). Now consider the simplicial complex L
in R3 given by the standard 2-simplex A? in R? along with all its faces. The simplicial
complex L is similar to K from the previous example, but has a 2-simplex as well. Thus

we have

dg dl

Cy(L) Cy(L)

Co(L)

le1, €2, e3] —— [e1, e2] — [e1, e3] + [e2, €3]

where C(L) = C1(K) and Cy(L) = Cp(K), and the formula for d; is the same as for K.
Now dg is injective, so Ha(L) = 0. Also Im(dy) = Z{[e1, e2] — [e1, e3] + [e2, €3]} =
Ker(d;) and so Hi(L) = 0. Finally, we obtain Hy(L) = Z just as in the previous example.

7.2 Some homological algebra

Definition 7.2.1. A chain complex is a sequence Cy, Cq, Cs... of abelian groups
equipped with homomorphisms d,, : C,, — C,,_1 such that d,,_1 od,, = 0. We write it as
C., and call the d,, the differentials of C,. The nth homology of C, is

Ker(d, : Cp, = Cp—1)
H,(Cs) := .
(C ) Im(dn—H : Cn—i—l — Cn)
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We write Z,,(Cs) := Ker(d,), and call this the abelian group of n-cycles in C,, and
B, (C,) :=Im(dy+1), and call this the abelian group of n-boundaries in C,.

A chain map f, : C¢ — D, is a sequence of homomorphisms f, : C,, — D, such
that f, o dn+1 = dnt1 © frne1; in other words, such that the square

fn+1
Crnt1 —= Dna

idn.t,q ldn-ﬁ—l
!

C,——=D,

commutes.
A chain homotopy from f, to ge (two chain maps from C, to D,) is a sequence of
homomorphisms h,, : C;;, — Dy 41 such that

In — fn=dpy10hy + hp_q10d,: Cyp — Dy

Note that in the above definitions we use the same symbol, d,,, for the differential in
any chain complex. Which one we mean in any given situation will be clear from context.

Lemma 7.2.2. A chain map fo : Co — Do induces a homomorphism
fe s Hn(Co) — Hy(Ds)
[z] — [fa(2)].
Furthermore, if fo and ge are chain homotopic then f, = g..
Proof. We need to check that f, is well-defined.

(i) Let [z] € Hn(Co) = gz((g:% be represented by x € Z,(C,). The element f,(x) € D,
is a cycle, as dp(fn(2)) = fa—1(dn(x)) = fn—1(0) = 0, because z is a cycle in C,,.

Thus f,(x) does represent a homology class.

(i) If [x] = [y, then x —y € B,(C,), and so x —y = d,,11(z) for some z € Cp,41. Then

fu(®) = fu(y) = faldnt1(2)) = dnt1(frt1(2)) is a boundary, so [fn(x)] = [fn(y)] €
H,(D,).

Now suppose that f, and ge are chain homotopic via a chain homotopy he, and let
x € Zp(Cs). We have

9n(®) = fn(®) = dpt1(hn(2)) + hn-1(dn(x))

but x is a cycle so d,(x) = 0. Thus g,(z) — fn(z) is a boundary, but then [g,(x)] =

Just as we did with the notion of homotopy of maps between spaces, we check that

(i) being chain homotopic defines an equivalence relation on the set of chain maps from
Ce to D,, written fo =~ ge,
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(ii) if ae : Ae — C, is a chain map, and fo >~ ge : Co — Do, then fq 0 ade > ge © ae, and
similarly with precomposition.

Definition 7.2.3. A chain map f, : C4 — D, is a chain homotopy equivalence if
there is a chain map ge : De — C and chain homotopies feoge >~ Idp, and geo fo ~ Ide, .

Lemma 7.2.4. If fo : Co — D, is a chain homotopy equivalence, then fi : H,(Cs) —
H, (D,) is an isomorphims for all n.

Proof. We have f, 0 g. = (fe 0 ge)x = (Idp, )s = IdHn(D.), and vice versa. O

7.3 Elementary calculations

Returning to simplicial complexes, note that for a simplicial complex K we have defined
in Section 7.1 a chain complex Cq(K), which we call the simplicial chain complex
of K. We want to show that a simplicial map f : K — L induces a chain map f, :
Co(K) — Co(L).

Lemma 7.3.1. Let f: K — L be a simplicial map. Then the formula

fu: Cu(K) — Co(L)
a0, a1+ - an] — [f(a0), f(ar), ..., f(an)]

defines a chain map fo : Co(K) — Co(L), and hence a homomorphism f. : Hy(K) —
H,(L).

Proof. We first need that f,,(T,(K)) C T5,(L), but this is clear. Then we compute

fn—l(dn([a07a1, e an])) = fa-1 (Z(—l)l : [a(), N F an])

1=0
=N (=1 [f(ao)..... F(ai),- ... [(an)]
=0
= dn(fn(lag,a1,...,an))). O

Definition 7.3.2. Say a simplicial complex K is cone with cone point vy € Vi if
|K| = Stx(vo) U Lkg(vg). In other words, every simplex of K is a face of a simplex
which contains vg.

Proposition 7.3.3. If K is a cone with cone point vy, then the inclusion i : {vo} — K
induces a chain homotopy equivalence iq : Co({vo}) — Co(K). Hence

Z{[vo]} n =0

0 else.
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Proof. The (only) map r : Vi — {vo} defines a simplicial map r : K — {vo}. We will
show that re is a chain homotopy inverse to i,. One direction is easy: the composition
Te 0o : Co({Un}) = Co({vo}) is equal to the identity map.

For the other direction, define a homomorphism

by 2 Op(K) — Opy1(K)

[ag, ..., an] — [v0, a0, ..., an)
and observe that it takes T, (K) into T,4+1(K), and hence gives a homomorphism h,, :
Cn(K) = Cpy1(K). If n > 0 then

n

(hn—1 0 dn + dny1 0 hn)([ao, .. an]) = Y _(=1)[vo, a0, - .-, iy - . ., O]
1=0

+ [ag, .., an)

n
+3 (=1 vg, ao, . i, -, an)
=0

= lag, ..., an) = (Id — i o ry)([ag, ..., an)).
If n =0 then
(h—1 0 do + di o ho)([ao]) = di([vo, ao]) = [ao] — [vo]
= (Id — g o ro)([ag])-
Thus he is a chain homotopy from ie 0 76 to Idc.( K)- O

Corollary 7.3.4. Let A" be the standard simplez in R™!, and L be the simplicial
complex given by A™ and all its faces. Then

Proof. Any vertex of L is a cone point. O

Corollary 7.3.5. Let K be the simplicial complex given by all the proper faces of A™ C
R™*L. Then for n > 2 we have

7Z 1=0o0rn-—1
Hi(K):{

0 else.

Proof. Note that K is the (n — 1)-skeleton of the simplicial complex L from the previous
corollary, so C;j(K) = C;(L) for 0 < i < n — 1, and C;(K) vanishes in higher degrees.
Thus the two chain complexes are

L L
d% d% dn72 dnf 1 dﬁ

Co(L) <2 Gy (L) <2 22 G (D) < G (D) <2 ()

4K JK X, & |

Co(K)<——C1(K)<2— - <= Cp_3(K)<“—C,,_1(K) =——0,
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where we have indicated which complex the differentials belong to.

Now for 0 < ¢ < m — 1 the two chain complexes are equal, and we deduce that
H;(K) = H;(L) for 0 <i <n—2. In particular in this range the homology if Z in degree
0 and 0 otherwise.

Near the top we have Cy, (L) = Z{[e1,...,ent1]}. Firstly H,(L) = 0 = Ker(d%) so
d% is injective, and secondly H,_1(L) = 0 so Ker(d% ;) = Im(d%). Thus we have

Ker(dX ;) = Ker(dk_;) = Im(dk) = 7
and so H,,_1(K) = Z. O

Now that we have some example computations of the homology of certain simplicial
complexes, it is interesting to ask what it means.

Lemma 7.3.6. There is an isomorphism Ho(K) = Z# poth components of |K|,

Proof. First note that every path component of a polyhedron contains a vertex (as every
point lies in an open simplex, so can be joined by a straight line to any vertex of that
simplex). By definition Ho(K) = ZY% /Im(d;). If vertices v and w lies in the same path
component, we can choose a path between them and then find a simplicial approximation

to this path. This gives a sequence v = vg,v1,...,v, = w of vertices such that each
adjacent pair span a 1-simplex. Then [v;] — [v;—1] = d1([vi—1,v;]) so summing over all ¢
gives [w] — [v] = di([vo, v1] + [v1,v2] + -+ - + [Un—1, n]), so [v] = [w] € Hp(K). O

7.4 The Mayer—Vietoris sequence

We will develop a tool akin to the Seifert—van Kampen Theorem, which will allow us to
compute the homology of a simplicial complex by decomposing it into pieces, computing
their homology, and then assembling them again using an algebraic machine.

Definition 7.4.1. We say that a pair of homomorphisms of abelian groups
A%
are exact at B if Im(f) = Ker(g). More generally, we say that a collection of homo-
morphisms
= A — A — Ao — Aiys — Ajpg —> -

is exact if it is exact at A; whenever there is both a map entering and a map exiting A;.
A short exact sequence of abelian groups is an exact sequence

0—ALB 20—,

that is, f is injective (exactness at A), g is surjective (exactness at C), and Im(f) =
Ker(g) (exactness at B).

Chain maps i, : Ae = Be and j, : Bs — C, form a short exact sequence of chain
complexes if for each n

0— A, B 2% C, —0

is a short exact sequence of abelian groups.
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Theorem 7.4.2. If 0 — A, 14 Be £> Ce — 0 is a short exact sequence of chain
complezes, then there are natural homomorphisms Oy : Hy,(Ce) — Hy—1(As) such that

. a*>Hn(A.) i

Hy(B.) —L— H,(C4) >

Ox )
<—>Hn_1<A.) e Hy y(Ba) e Hy () > -

15 exact.
Let us defer the proof of this theorem.

Theorem 7.4.3 (Mayer—Vietoris). Let K be a simplicial complex, M and N be subcom-
plezes, and L = N N M. Suppose that M and N cover K (i.e. every simplex of K lies
in M or N ). Let us write

-

I J

Mk

N<—2

for the inclusion maps between these simplicial complexes. Then there are natural homo-
morphisms Oy : Hy(K) — H,_1(L) such that

8* ‘* ‘* k*—l*
2 B (D) s B, (M) @ Hy(N)

L s
C—)Hn—l([’)ﬂ; n—l(M)@Hn_l(N)@) n—l(K)4>

k:*_l*

Ho(M) @ Ho(N) Hy(K) ——0

18 exact.

Proof. Note that for each n the sequence of abelian groups

0 — Cu(L) ™ 0 (M) & Cp(N) 2= € () — 0

is exact:
(i) i, and j, are both injective,
(ii) every simplex of K lies in M or N, so k,, — l,, is surjective,

(iii) if (x,y) € Ker(k,, — ;) then k,(x) = l,,(y), so  and y are both sums of simplices
in both M and N, so lie in L and are equal.

Thus the chain maps ie + jo : Co(L) — Co(M) @ Co(N) and ke —le : Co(M) ® Co(N) —
Co(K) form a short exact sequence of chain complexes, so Theorem 7.4.2 applies, giving
the result. O
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Proof of Theorem 7.4.2. The proof consists of what is affectionately known as “diagram-
chasing", that is, following the logical consequences of an element being at a certain place
in a commutative diagram.

Constructing 0, (The Snake Lemma). Consider the commutative diagram

0 A, —m g, " o, 0
N T
0 An—l ol Bn 1 £>C'n 1—=0

and let [z] € H,(Cs) be a homology class, represented by a cycle x € C,. As j, is
surjective, there is a y € By, such that j,(y) = x. Then d(y) € B, _; satisfies

Jn-1(d(y)) = d(jn(y)) = d(z) =0

as x was a cycle. By exactness of the bottom row at B,,_1, we thus have d(y) = i,—1(2)
for some z € A,_1.

Now we have i,_2(d(2)) = d(in—1(2)) = d(d(y)) = 0, and i,,_2 is injective, so d(z) =
0. Thus z representes a homology class 0, ([z]) := [z] € H,,—1(As).
0x is well-defined. If [z] = [2/] € H,(C,) then x — 2/ = d(a) for some a € Cp41.

Proceeding as above for 2/, we get a y' € B,,. As j,1 is surjective, let b € B, 11 be such
that jn+1(b) = a, then

inly —y) =2 =2’ = d(a) = d(jn41(b)) = jn(d(D)),

so by exactness at B,, we have y — ¢’ = d(b) + i,(c) for some ¢ € A,,. Thus

d(y) — d(y') = d(in(c)) = in-1(d(c)),

so by injectivity of i,,—1 we get z — 2’ = d(c). Thus [z] = [2'] € H,—1(4s).

0y is a homomorphism. Given [z], [2'] € H,(C,), we can choose y+7v' as the lift to By,
of x+2' € C),. It is then immediate that 9,,([x+2']) = [z+2/], so Ox is a homomorphism.

The sequence is exact at H,(C,). First let [z] € Im(j,). Then we can write z = j,(y)
for y € B, a cycle. The element y is then a lift of x, and it satisfies d(y) = 0. Thus
O([2]) = 0.

Now suppose that d,([z]) = 0. Thus the z obtained by the Snake Lemma construction
satisfies z = d(t) for some t € A,,, and we have j,(y — in(t)) = z. But d(y —in(t)) =
d(y) — d(in(t)) = d(y) — in—1(d(t)) = d(y) — in—1(z) which is 0 by the way we chose z.
Thus y — i, (¢) is a cycle, and [z] = j.([y — in(?)]), so [z] € Im(j).

The sequence is exact at H,(B,). It is clear that Im(i,) C Ker(j.), as j, o i, = 0.
Let y be a cycle so that j.([y]) =0, so j,(y) = d(a) for some a € Cyy1. Let b € B4 be
such that j,+1(b) = a. Then

gy — d(b)) = d(a) = d(jnt1(b)) =0
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and so y — d(b) = i,(t) for some t € A,,. As y is a cycle, so is i,(t), and as i, is injective
it follows that ¢ is a cycle. But then i, ([t]) = [y — d(b)] = [y], so Im(i,) D Ker(j.).

The sequence is exact at H,(A,). If 0.([xr]) = [2] as constructed via the Snake
Lemma, then iy (z) = d(y), so ix([z]) = 0. Thus Im(d,) C Ker(i,). Let z be a cycle so
that i.([2]) = 0, that is in(2) = d(y). Then d(jn11(y)) = jn(d(y)) = jn(in(2)) = 0, so
Jn+1(y) is a cycle. By construction 0x([jn+1(y)]) = [2], so Im(0x) D Ker(iy). O

7.5 Continuous maps and homotopy invariance

In this section we want to show that to each map f : |K| — |L| we may associate a
homomorphism f, : H;(K) — H;(L), even when f does not come from a simplical map,
and further that if f ~ f/ then f, = fL.

Definition 7.5.1. Simplicial maps f,g : K — L are contiguous if for each ¢ € K the
simplices f(o) and g(o) are faces of some simplex 7 € L.

Lemma 7.5.2. If f,g : K — L are both simplicial approximations to the same map,
then they are contiguous.

Proof. Let F : |K| — |L| be a continuous map which f and ¢ are simplicial approxima-
tions to. If z € ¢ C |K| and F(x) € 7 C |L|, then as in the proof of Lemma 6.2.2 we
have that f(o) and g(o) are both faces of 7. O

Lemma 7.5.3. If f,g: K — L are contiguous, then fo =~ ge : Co(K) — Co(L) and so
fe = g

Proof. Choose an ordering < on Vi, so we can represent basis elements for C, (K) by
ordered simplices [ag,...,ay] such that ap < a3 < -+ < ay. Define a homomorphism
hy, 2 Cp(K) — Cry1(L) on basis elements by

n

hn([aOa ceey an]) = Z(_l)i[f(a@)a R f(ai)ag(ai)a s 7g(an)]'

=0
Direct calculation shows that d o h,, + hp,—1 0d = g, — fn, so the h, provide a chain
homotopy from fe to ge. O

Let K’ be the barycentric subdivision of a simplicial complex K, and for each vertex
¢ € Vi choose a vertex a(d) of o, to obtain a function a : Vg — V.

Lemma 7.5.4. The function a : Vi — Vi defines a simplicial approximation to the
identity map. Furthermore, every simplicial approzimation g : K' — K to the identity
map is of this form.

Proof. The first claim is that Stx/(6) C Stx(a(d)). To see this, suppose that ¢ is a
vertex of a simplex 7 = (6¢,61,...,0,) of K', say 6 = ;. Then a(d) is a vertex of oy,
and hence a vertex of o). In particular 7 C 6, C Stg(a(5)).

If g : K' — K is a simplicial approximation to the identity map then we have
0 C Str(g(6)), but the open simplices in Stx(g(d)) are precisely those whose closure
contains ¢(d), so g(6) must be a vertex of o. O
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Proposition 7.5.5. Fora: K' — K a simplicial approzimation to the identity map, the
induced map a, : Hy(K') — Hyp(K) is an isomorphism for all n.

Proof. First consider the case where K consists of a single p-simplex, o, and all its faces.
Note that K’ is a cone with cone point &, and we have seen that K is also a cone, with any
vertex as cone point. By Proposition 7.3.3 we can thus calculate the homology of either
of these simplicial complexes, and we find that it is 0 in strictly positive degrees, and
Z in degree zero, generated by any vertex. Thus by direct computation, any simplicial
approximation to the identity a : K/ — K induces an isomorphism on homology in every
degree.

Now let us prove the proposition by double induction on (i) the dimension of K,
and (ii) the number of simplices of K of maximal dimension. If ¢ is a simplex of K of
maximal dimension, then it is not a proper face of any simplex and so L := K \ {o} is
also a simplicial complex. Let S be the simplicial complex given by ¢ and all its faces,
and T'= SN L. Any simplicial approximation to the identity a : K/ — K sends L’ into
L and S’ into S (so also T" into T'). We thus obtain a map between Mayer—Vietoris
sequences

Hp(T") —— Hp(S") ® Hp(L') — Hp(K') — Hy1(T") —— Hy—1(S") @ Hp—1 (L)
\L(G‘T/)* l(ds/)*@(fﬂy)* J{“* l(ah/)* i(fﬂs/)*@(ay)*
Hy(T) —— Hn(S) © Hy(L) —— Hp(K) —— Hp1(T) —— Hp—1(S) ® Hp—1(L)

in which every square commutes.

Now S is a simplex, so the proposition holds for it, T" has strictly smaller dimension
than K, so the proposition holds for it, and L has either strictly smaller dimension than
K, or else has fewer simplices of maximal dimension, so the proposition also holds for it.
Thus all the vertical maps in the diagram above are known to be isomorphisms except
the middle one. An easy diagram-chase (known as the Five Lemma') shows that the
middle map must then be an isomorphism too. O

We will now use the isomorphisms of this proposition to identify H,(K) with H,(K'),
and so by iteration to identify H,(K) with H,(K()). Note that by Lemmas 7.5.2
and 7.5.3 all simplicial approximations to the identity a : K’ — K induce the same
isomorphism a, : H.(K') = H.(K). We call this isomorphism v, and we write vy,
for the composition vy -1y 0 --- o vgr o vk and, for r > s, vi s for the composition
Vg(r=1) © O VE(s+1) O VE(s)-

Proposition 7.5.6. To each continuous map f : |K| — |L| there is an associated ho-
momorphism f. : H(K) — H.(L) given by f. = sy 0 I/;(l,r, where s : KU — L is a
simplicial approximation to f, which exists for some r by the Simplicial Approximation
Theorem.

(i) This homomorphism does not depend on r or s.

(ii) If g : |M| — |K| is another continuous map, then (f o g). = f« 0 gs.

1See Example Sheet 4, Q3
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Proof. For (i), let s : K — L and t : K9 — L be simplicial approximations to f,
with » > ¢. Choose a : K" — K@ a simplicial approximation to the identity. Then
s,toa: K — L are both simplicial approximations to f, so are contiguous by Lemma
7.5.2, and hence induce the same homomorphism on homology by Lemma 7.5.3. Thus
Sy =ty 0 Ay, but a, = VK r.qy SO Sx © V[_(}r =t OVK pq O V;(}T =t,0 V[_(}q.

For (ii), let s : K — L be a simplicial approximation to f, and ¢t : M@ — K() be
a simplicial approximation to g. Then s ot is a simplicial approximation to f o g, so

(f © g)* = (3 © t)* © Vl\i/l%q
= (s 0 1/;(717,) o (VK otyo yj\jﬁq) = f4 0 gx. O

Corollary 7.5.7. If f : |K| — |L| is a homeomorphism, then f. : Hy,(K) — Hy(L) is
an isomorphism for every n.

For some applications it is convenient to have a chain-level description of the map
vl Hi(K) — H;(K'), that is, a chain map se : Co(K) — Co(K') which induces
l/;(l on homology. Morally speaking it is clear what such a map should do: it should
send a simplex o of K to the sum of all the simplices of the barycentric subdivision o’.
However there are signs involved. We begin by letting so([vo]) = [(vo)], and supposing
that sg, s1,...,s,_1 have been defined, satisfying d; o s; = s;_1 od; for i < n, then for an
n-simplex we let

sn(0) = [6, sp—1dp(0)].
The notation [6, —] must be understood to be linear in —, and expanded out to obtain
a linear combination of ordered simplices. So for example
s1([vo, v1]) = [(vo, v1), (v1) — (vo)] = [{vo, v1), (v1)] — [(vo, v1), (vo)]-
Proposition 7.5.8. The maps s, define a chain map se, and s, = VI_<1.

Proof. We calculate

o —

dpn(sn([vo, -y vn])) = dn([{vo, - .., vn), Sp—1dn([vo, - . -, vn])])

—

= $p—1dp([vo, ..., vn]) — [(v0, .., Vn), dn—1Sn—1dn([v0, - - ., Vn])]

and as d,,_1 08,1 = Sp_20dp_1 and d,,_1 o d,, = 0 the second term vanishes, so the s,
define a chain map.

Let < be a total order of Vi, and let a : K = Vg — Vi send each simplex to
its smallest vertex (with respect to <). This defines a simplicial approximation to the
identity a : K’ — K. Certainly ag o s is the identity, so suppose that a; o s; is the

identity for i < n. If [vg,...,v,] is a simplex with vy < - -+ < v, then
an(sn([v0; - -, vn])) = an([{vo, - -, vn), Sn—1dn([vo, - - -, vn])])
= [Uo, anflsnfldn([v()a cee 7vn])]
and as a,_108,—1 is the identity this is [vg, dy ([vo, - . . , vs])]. Expanding out d,,([vo, . .., vy]),
the first term is [vy, ..., v,] and the other all have a vy in them, so when vy is added they

become zero in Cy,(K). Thus we obtain [vg, ..., vy], as required. O
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To obtain the strongest applications of simplicial homology theory, we wish to know
that continuous maps between polyhedra which are homotopic induce equal homomor-
phisms on homology. We first show that maps of polyhedra which are sufficiently close
induce equal homomorphisms in homology.

Lemma 7.5.9. For a simplicial complex L in R™, there is a € = (L) > 0 such that if
f,9 | K| — |L| satisfy | f(x) —g(x)| < € for all x € |K]|, then fi = g« : Hy(K) — Hy(L).

Proof. The sets {Str(w)}wev, give an open cover of |L|, which is compact, so by the
Lesbegue Number Lemma (Lemma 1.1.3) there is a € > 0 such that each ball of radius
2¢ in |L| lies in some Sty (w).

Let f,g:|K| — |L| be as in the statement, using this e. By the Lesbague Number
Lemma applied to the open cover {f~(Be(y))}ye|r of | K|, there is a § > 0 such that
each f(Bs(x)) is contained in some Bc(y), and hence also each g(Bs(x)) is contained in
B2e(y)'

Choose 7 > 0 so that (K (™) < %5. Then for each v € V() the diameter of St () (v)
is less than §, so f (St (v)) and g(St ) (v)) both lie in some Sty (w). Setting s(v) = w,
we obtain s : Vi y — Vi, which is a simplicial approximation to both f and g. Thus
fs:=8s0 V;(}T =: 4. OJ

Theorem 7.5.10. If f ~ g : |K| — |L|, then f. = gx.

Proof. Let H : |K| x I — |L| be a homotopy from f to g. As |K| x [ is compact, H
is uniformly continuous. Thus for € = €(L) provided by the previous lemma, there is a
6 > 0 such that

|s —t| <d=|H(z,s) — H(z,t)| <e Vzel|K|

Thus choose 0 = tg < t1 <ty < --- < t;, = 1 such that t; — t;_1 < ¢ for all i, and let
fi(x) = H(z,t;). Then by the previous lemma (f;—1)« = (fi)« for all ¢, but fy = f and
fe=9 O

This allows us to define and work with homology for a larger class of spaces than just
polyhedra.

Definition 7.5.11. A h-triangulation of a space X is a simplicial complex K and a
homotopy equivalence g : |[K| — X. We define the homology of this h-triangulated
space to be H,(X) := H,(K).

Note that in particular a triangulation is an h-triangulation.

Lemma 7.5.12. The homology of an h-triangulated space does not depend on the choice
of h-triangulation.

Proof. Let g: |K| — X be another h-triangulation, f : X — |K| be a homotopy inverse
to g, and f : X — |K| be a homotopy inverse to g. Then fog: |K| — | K| is a homotopy
equivalence with homotopy inverse f o g. Thus

(fog)so(fog)=1Idp, K

and vice-versa, so (f 0 g)s : Hy(K) — Hy(K) is an isomorphism. O
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If g:|K| - X and g : |[K| — X are h-triangulated spaces, and h : X — X is a
continuous map, then we obtain a continuous map
K| = X 15 X =5 |K|

and hence a homomorphism H,(K) — H,(K). Identifying these groups with H,(X)
and H,(X) respectively, we obtain a homomorphism

hy : Hy(X) — Hy(X).
One can check that this is independent of choice of h-triangulations of either space, and
that if h ~ k' : X — X then h, = ..
7.6 Homology of spheres and applications

As a first application, we can use homology to upgrade our proof of Brouwer’s fixed point
theorem (Corollary 3.2.3) to all dimensions.

Lemma 7.6.1. The sphere S*~! is triangulable, and for n > 2 we have

Z i=0n-1

0 else.

Hy(5" 1) = {

Proof. If A™ C R™*! is the standard n-simplex, then its boundary JA™ is homeomorphic
to S”~!. This boundary is the polyhedron of the simplicial complex of Corollary 7.3.5,
where its homology was computed. O

Theorem 7.6.2 (Brouwer).
(i) There is no retraction of D™ to S"~ 1,
(i) Any continuous map f: D™ — D™ has a fized point.

Proof. The argument we gave in Corollary 3.2.3 shows that (i) implies (ii). To prove (i),
suppose that n > 2, let 7 : D™ — S"~! be a proposed retraction, and i : S*~! — D" be
the inclusion, and consider

Z = H, 1(S"™Y) 25 H,_1(D") =5 H, 1 (S" 1) > Z.

This is the identity map, as r o¢ = Idgn-1. But D" is contractible, so is homotopy
equivalent to the polyhedron of the simplicial complex consisting of a single vertex. As
n—1> 0, it follows that H,_1(D"™) = 0, which is a contradiction. O

Recall that in Example 6.1.9 we gave a different triangulation of S™, using the sim-
plicial complex K having simplices

(+ey, tea, ..., teni1)
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in R and all their faces. By Lemma 7.5.12 we must also have

7Z 1=0
Hi(K)%{ e

0 else,

as different h-triangulations of S™ have the same homology.

Lemma 7.6.3. The element

T = E aiag - apyilaier, ..., ant1ent1] € Cp(K)
Qe{_lﬂl}n+l

is a cycle, and generates H,(K) = Z.

Proof. When we apply the differential d to z, the simplex [ajeq, ..., a6, ... ant1€n11]
appears twice, with a; = 1 and a; = —1, and these have opposite coefficients so cancel
out. Also, this element is not divisible by any integer, so generates Z = H,(K). O

The reflection r; : R*1 — R™*1! in the ith coordinate defines a simplicial map from
K to itself, and this satisfies

ri(x) = E a1az - Apy1(aién, ..., ai—1€—1, —Qi€;, Qit1€i4+1, Gnt1€n+1)
Qe{_lvl}n+1
= - E a1ag - - an+1[a1€1, cee ,@n+16n+1] = -
ae{—1,1}n+1

so (13)« : Hp(S™) — H,(S™) is multiplication by —1. The antipodal map a : S™ — S™
may be written as 7172 - 711, 80 ax : Hy(S™) — H,(S™) is multiplication by (—1)"*+1.

Corollary 7.6.4. If n is even then the antipodal map a : S™ — S™ is not homotopic to
the identity?.

2See Example Sheet 1, Q1
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7.7 Homology of surfaces, and their classification

Definition 7.7.1. A surface is a Hausdorff topological space in which each point has an
open neighbourhood homeomorphic to an open subset of R2. A triangulated surface
is a surface X equipped with a triangulation h : |K| — X.

Example 7.7.2 (Orientable surfaces). Let K be the simplicial complex shown in Figure
7.1, which is a triangulation of the torus with an open disc removed, X.

1 2 4 1

K
7 5 9 7 r X = |K|
b Yy b o~
1 5 G 4
1 2 a 3 1

Figure 7.1 A triangulation of X, the torus with an open disc removed.

Its boundary is identified with the boundary of a 2-simplex. We can glue g copies
of K together along an edge to obtain a simplicial complex K, which triangulates the
surface Fy, from Example 5.4.1, with boundary given by a sub-simplicial complex L. We
can then glue on the cone CL on L to obtain a triangulation of the surface X, from
Example 5.4.1.

|CL| = D?

Homology of K. The subcomplex W C K given by
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w3 7
a b

1
2 4

is such that the inclusion |W| < | K] is a homotopy equivalence, and hence the inclusion
induces an isomorphism on homology. By an application of Mayer—Vietoris, decomposing
W into two circles glued together at 1, we obtain Ho(K) = Z{[1]} and H,(K) = Z{a, b}
where

a=1[1,2]+2,3] + [3,1] b=[1,4+ 4,7+ [7,1],

and Hy(K) = 0. Furthermore, the boundary cycle r = [6,5]+[9, 6]+ 5, 9] of K represents
the same homology class as a + b — a — b, so the zero homology class.

Homology of K,;. We can decompose K; = K,_1 U K where K,_; N K is a 1-simplex,
A'. The Mayer—Vietoris sequence is then

0

Ox
NI | (K @ Hy(Kyor) 275 1y () >
)

C ha

<—> Hy(Al
and A! is contractible so Hy(A!) = 0 and Hy(A') = Z generated by any vertex. Thus
we have

Ox

s =+ J ks —ls
UL Ho(K) @ Ho(Ky—1) 2% Ho(Ky) —0

0 0 Hy(K,) )

C ;
s+ |
02 22 ¢ Hy (K, y) Hy(K,) )
0
Tse+ % Ky —ls
7z Z@Ho(Kg_l)HH()(Kg)HO

and so by induction

Ho(Ky) = Z generated by any vertex
H(K,) = 7% generated by a1, bi, ..., ag, by
Hy(K,) = 0.

The boundary cycle r1 + --- + 7, represents the same homology class as a1 + b1 — a1 —
bi +---+ag+ by —ag — by, so is zero.
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Homology of K, U CL. The Mayer—Vietoris sequence for this decomposition is

0

HQ(Kg U CL) )

ks —ls

o.
<—> Hy(L) “% |y (K,) @ H(CL) =% 1K, uCL) )

Ox
g Ho(L) “™5 Hy(K,) ® Ho(CL) =% Hy(K,UCL) —0

The simplicial complex L is a triangulation of S, and CL is contractible, so we obtain

0 HQ(KQUCL)D
S
7 ZQQ@OL_IQHl(KgUCL)D
0
(1,1) Ko —Ls
Z Z&7 "% Hy(K,UCL)—=0

and the map i, : H1(L) — H;(K,) sends the generator to the boundary cycle 11 +- - -+ry,
which is the zero homology class, so this map is zero. We deduce that

Hy(K,UCL) = Z generated by any vertex
H{(K,uCL) = 729 generated by ay, b1, ... ,ag, by
Hy(K,UCL) = Z.

The group Ho(K,U CL) is generated by any 2-cycle « such that 0,(x) € Hi(L) = Z is
a generator.

Example 7.7.3 (Nonorientable surfaces). Let K be the simplicial complex shown in
Figure 7.2, which is a triangulation of the projective plane with an open disc removed,
Y.

T r Y = |K]|

1 a 2

Figure 7.2 A triangulation of Y, the projective plane with an open disc removed.
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Its boundary is identified with the boundary of a 2-simplex. We can glue n copies
of K together along an edge to obtain a simplicial complex K, which triangulates the
surface F,, from Example 5.4.3, with boundary given by a sub-simplicial complex L. We
can then glue on the cone C'L on L to obtain a triangulation of the surface S, from
Example 5.4.3.

Homology of K. The subcomplex W C K given by

w3

2

is such that the inclusion |W| < | K] is a homotopy equivalence, and hence the inclusion
induces an isomorphism on homology. We obtain Hy(K) = Z{[1]} and H;(K) = Z{u}
where

u=a+b=1[1,2]+[2,3] +[3,1],

and Ho(K) = 0. Furthermore, the boundary cycle r = [4, 5]4[5, 6]+[6, 4] of K represents
the same homology class as 2u.

Homology of K,,. We can decompose K,, = K,,_1 UK where K,,_; N K is a 1-simplex,
A'. The Mayer—Vietoris sequence is then

0

0 HQ(Kn—l)

HZ(Kn) )

a*
<—> Hi(AY " 1 (K @ Hy (K1) 2% Hy(K) )

Ox
Z*"‘* k*_l*
<—> Ho(AY) 222 Ho(K) @ Ho(Kn_1) 2% Ho(K,) —=0

and A! is contractible so Hy(A!) = 0 and Hy(A') = Z generated by any vertex. Thus
by induction

Hy(K,) = Z generated by any vertex
Hy(K,) =Z" generated by uq,...,u,
Hy(K,) =0.

The boundary cycle r1+- - -+7, represents the same homology class as 2u1+2ug+- - -+2u,,.
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Homology of K,, UCL. The Mayer—Vietoris sequence for this decomposition is
0@ Ho(CL) Hy(K,UCL) >

ks —lx

o,
<—>H1(L) MHl(Kn) © H1(CL) — H1(K,UCL) >

Ox
<—> Ho(L) 22 Hy(K,) @ Ho(CL) =% Hy(K, UCL) —=0

The simplicial complex L is a triangulation of S, and CL is contractible, so we obtain

0 HQ(KnUCL)>
C ' EX
7 Zn@oMﬂl(KnUCL)D
C 1,1 0
728 70725 gk, uCL) —0

and the map i, : H1(L) — Hi(K,) sends the generator to the boundary cycle ri+- - -4,
which is the 2u; + 2ug + - - - + 2u,,. Thus this map is 1 — (2,2,...,2), which is injective.
We deduce that

Hy(K, UCL) = Z generated by any vertex
H(K,UCL)=7Z"]7{(2,2,...,2)} generated by uy,...,uy subject to 2u; + - -- + 2u, =0
Hy(K, UCL) = 0.

Note that the change of basis
e1=ur+u2+ - +uy ei=u; 2<i<n
gives an isomorphism of abelian groups Z"/Z{(2,2,...,2)} 2 Z/2 & Z" .

To summarise these two examples, as well as Lemma 7.6.1 in dimension 2, the (tri-
angulable) surfaces S, ¥y for ¢ > 1, and S,, for n > 1, all have non-isomorphic first
homology groups:

H\(S*)=0  Hi(%g)=7%  H\(S)) =2/202"".

Thus no two of these surfaces are homeomorphic, or even homotopy equivalent. This
proves one half of the following theorem. The other half is much more elementary, but
quite long: it can be found for example in Maunder’s Algebraic Topology.

Theorem 7.7.4 (Classification of triangulable surfaces). Any triangulable surface is
homeomorphic to one of

S27217227237 <o
811527537 s

and no two of these are homeomorphic.
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We have been using the terms “orientable surface” for one obtained by gluing together
copies of the torus, and “nonorientable surface” for one obtained by gluing together copies
of the projective plane. These are in fact intrinsic properties of surfaces, and not just a
feature of how we choose to construct them: this may be seen homologically by

Hy(S%) = Hy(Xy) =Z but Hy(S,)=0.

This difference accounts for our partition in Theorem 7.7.4 of surfaces into two series,
the orientable ones (52, %1, ¥a, X3, .. .) having second homology Z, and the nonorientable
ones (51, 52,53, ...) having second homology 0.

7.8 Rational homology, Euler and Lefschetz numbers

Definition 7.8.1. For a simplicial complex K, define the rational n-chains, C,,(K;Q),
by letting O,, (K; Q) be the Q-vector space with basis the oriented simplices, and T, (K; Q)
be the sub vector space spanned by the usual collection of “trivial” simplices. We define
dp, : Cp(K;Q) — Cp—1(K;Q) by the usual formula, and write

 Ker(dy : Co(K5Q) © Gt (K:Q))
Ha(K5 Q) = T ot (55Q) = (K3 Q)

for the nth rational homology of K. It is a Q-vector space.

Everything we did for ordinary homology remains true for rational homology (induced
maps, subdivision isomorphism, homotopy invariance, Mayer—Vietoris sequence). The
following lemma gives some idea of what rational homology measures. Its proof is on
Example Sheet 4.

Lemma 7.8.2. [f H,(K) = Z" @ F for F a finite abelian group, then H,(K;Q) = Q".

We thus know the homology of several spaces. For spheres, with n > 0,

0 else.

H;(5™;Q) = {

For orientable surfaces

Q i=0,2
Hi(Sg;Q) = Q% i=1
0 else.
For nonorientable surfaces
Q 1 =0
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Definition 7.8.3. Let X be a polyhedron and f : X — X be a continuous map. The
Lefschetz number of f is

L(f) = (=1)'Tr (fs : Hi(X;Q) — Hi(X;Q)).

>0

The Euler characteristic of X is

X(X) = L(ldx) = ) (~1)'dimgH;(X; Q).
120

Example 7.8.4. Computing the Euler characteristic for the examples we have gives

2 n even
x(S™) {0 o odd x(Zg) g x(Sn) n

Example 7.8.5. Recall that the antipodal map a : S™ — S™ has a. : H,(S™) — H,(S™)
given by multiplication by (—1)"*!. The same is true in rational homology, and so

L(a) =1+ (=1)"- (=1)"* =o.

Lemma 7.8.6. Let V' be a finite-dimensional vector space and W <V be a subspace,
Let A:V — V be a linear map such that A(W) C W. Let B = Alw : W — W be the
restriction and C : V/W — V/W be the induced map. Then

Tr(A) = Te(B) + Tr(C).

Proof. Let ey, eq,...,e,. be a basis for W, and extend it to a basis ey, es,...,e, of V.
The matrix of A with respect to this basis is of the form

(v %)

where X is the matrix for B with respect to the basis e, es,...,e, and Z is the matrix
for C' with respect to the basis [e,41],...,[en). Now Tr(§ V) = Tr(X) + Tr(Z), as
required. ]

Corollary 7.8.7. For a chain map fe : Ce(K;Q) = Co(K;Q), we have

S (=D)'Te(fe s Hi(K;Q) = Hi(K;Q)) = Y (—1)"Tr(f; : Ci(K; Q) — Ci(K;Q)).

i>0 i>0
Proof. There are exact sequence
0 — Bi(K;Q) — Zi(L;Q) — Hi(K;Q) — 0

and
0 — Zi(K;Q) — Ci(L;Q) — Bi—1(K;Q) — 0.
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Let fH . fB, l , and fc be the maps induced by f, on homology, boundaries, cycles,
and Chams respectively. Then

L(|f]) = Z;(—l)“’Tr(fﬁ )
= g (Te(f7) = Te(£7))
= Z (Te(f7) = Te(£2,) = Te(f7))
= g DTre(£9). O

>0

Corollary 7.8.8. We have Zz‘zo(_l)i - #i-simplices of K = x(|K|), and in particular
this number does not depend on the triangulation of the polyhedron |K|.

Theorem 7.8.9 (Lefschetz). Let f: X — X be a continuous map from a polyhedron to
itself. If L(f) # 0 then f has a fized point.

Proof. We will show the contrapositive to the theorem: if f has no fixed points then
L(f) = 0. Supposing that f has no fixed points, let

=inf{|x — f(z)| : z € X}.

As X is compact, 6 > 0. Let K be a triangulation of X with p(K) < ¢/2, and choose g :
K — K a simplicial approximation to f. For v € K(") we have f(v) € (St (v)) C
Str(g(v)), and so |f(v) —g(v)| < 6/2. But |f(v) —v| > §, and so |g(v) —v| > /2. Thus
if v € 0 € K then g(v) € 0.

The map f, is defined to be g. o (vi )5 1 Using the subdivision map s, from Propo-

sition 7.5.8, iterated, the map f, is induced by the chain map ge © sg) : Co(K;Q) —

Co(K;Q). Thus by Lemma 7.8.7 we have
L(f) = D (=1 Tr(gio 5" : CilK; Q) = Ci(K; Q).

i>0

(7")(

If o € K is an i-simplex then s; ’(0) is a sum of simplices inside o, and so gi(sgr) (0)) is

(r)

a sum of simplices disjoint from o. Thus the matrix for g; o s;”” with respect to the basis
of simplices has zeroes on the diagonal, so has trace zero. O

Example 7.8.10. If X is a contractible polyhedron then L(f) =1 for any f: X — X,
so any f has a fixed point. This recovers Brouwer’s fixed point theorem, but is far more
general.

Example 7.8.11. let h: |[K| — G be a triangulation of a topological group G which is
connected and nontrivial. The for g # 1 € G multiplication by g is a homeomorphism
with no fixed points, so 0 = L(— - g). On the other hand, choosing a path from g to
1 € G gives a homotopy from — - g to the identity, so

0=L(~-g) = L(~-1) = L(Idg) = x(G).



78 Chapter 7 Homology

Among the surfaces, only 31 and Sy have Euler characteristic zero, so no other
surface admits a topological group structure. The torus £; = S' x S! does admit a
group structure, as R?/Z2. The surface Sy is the Klein bottle, and does not admit a
group structure. One way to see this is to use Q13 on Example Sheet 1, where the
fundamental group of the Klein bottle is computed and shown to be non-abelian: it is
an easy exercise to show that the fundamental group of a topological group (based at
the identity element) is always abelian.

Example 7.8.12. Let f : S3 — S3 be such that f o f =Idg,. We have

Q i=0
Hi(S3Q)=qQ* i=1
0 else,

and f, : Ho(S3;Q) — Hoy(S3;Q) is the identity map, as this group is generated by any
vertex of a triangulation of S3. The linear map

fe: Q%= Hy(S5;Q) — Hi(S3;Q) = Q?

satisfies (f«)2 = Id, so by elementary linear algebra its eigenvalues are all +1. Thus its
trace is one of —2, 0, or 2, and so

L(f) =1- Tr(f* : HI(S3;Q) — Hl(SfS;@)) € {—1,1;3}-

Hence f must have a fixed point.
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